Exact analytical solutions for the variational equations derived from the nonlinear Schrodinger equation

被引:6
|
作者
Moubissi, A. B.
Nakkeeran, K.
Abobaker, Abdosllam M.
机构
[1] Univ Sci & Tech Masuku, Dept Phys, Franceville, Gabon
[2] Univ Aberdeen, Kings Coll, Sch Engn, Aberdeen AB24 3UE, Scotland
来源
PHYSICAL REVIEW E | 2007年 / 76卷 / 02期
关键词
D O I
10.1103/PhysRevE.76.026603
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
By means of the variational formalism for the nonlinear Schrodinger equation, we find an explicit relation for the power of a pulse in terms of its duration, chirp and fiber parameters (group-velocity dispersion and self-phase modulation parameters). Then, using that relation, we derive the explicit analytical expressions for the variational equations corresponding to the amplitude, width, and chirp of the pulse. The derivation of the analytical expressions for the variational equations is possible for the condition when the Hamiltonian of the system is zero. Finally, for Gaussian and hyperbolic secant ansatz, we show good agreement between the results obtained from the analytical expressions and the direct numerical simulation of the nonlinear Schrodinger equation.
引用
收藏
页数:4
相关论文
共 50 条