A second-order numerical scheme for the Ericksen-Leslie equation

被引:1
|
作者
Wang, Danxia [1 ]
Miao, Ni [1 ]
Liu, Jing [1 ]
机构
[1] Taiyuan Univ Technol, Coll Math, Jinzhong 030600, Shanxi, Peoples R China
来源
AIMS MATHEMATICS | 2022年 / 7卷 / 09期
关键词
Ericksen-Leslie equation; nematic liquid crystal; finite element; second-order accuracy; pressure-correction; FINITE-ELEMENT SCHEME; DE-GENNES THEORY; UNIQUENESS THEOREMS; LIQUID-CRYSTALS; VARIABLE STEPS; WELL-POSEDNESS; EXISTENCE; APPROXIMATION; MODEL; SYSTEM;
D O I
10.3934/math.2022867
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider a finite element approximation for the Ericksen-Leslie model of nematic liquid crystal. Based on a saddle-point formulation of the director vector, a second-order backward differentiation formula (BDF) numerical scheme is proposed, where a pressure-correction strategy is used to decouple the computation of the pressure from that of the velocity. Designing this scheme leads to solving a linear system at each time step. Furthermore, via implementing rigorous theoretical analysis, we prove that the proposed scheme enjoys the energy dissipation law. Some numerical simulations are also performed to demonstrate the accuracy of the proposed scheme.
引用
收藏
页码:15834 / 15853
页数:20
相关论文
共 50 条
  • [11] The Ericksen-Leslie System for Data on a Plane
    Barbera, Daniele
    Georgiev, Vladimir
    NEW TRENDS IN THE APPLICATIONS OF DIFFERENTIAL EQUATIONS IN SCIENCES, NTADES 2023, 2024, 449 : 95 - 106
  • [12] ERROR ESTIMATES OF A SPHERE-CONSTRAINT-PRESERVING NUMERICAL SCHEME FOR ERICKSEN-LESLIE SYSTEM WITH VARIABLE DENSITY
    Wang, Danxia
    Liu, Fang
    Jia, Hongen
    Zhang, Jianwen
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2023, 28 (11): : 5814 - 5838
  • [13] The Small Deborah Number Limit of the Doi-Onsager Equation to the Ericksen-Leslie Equation
    Wang, Wei
    Zhang, Pingwen
    Zhang, Zhifei
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2015, 68 (08) : 1326 - 1398
  • [14] ON Lp ESTIMATES FOR A SIMPLIFIED ERICKSEN-LESLIE SYSTEM
    Huang, Jinrui
    Wang, Wenjun
    Wen, Huanyao
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2020, 19 (03) : 1485 - 1507
  • [15] NUMERICAL APPROXIMATION OF NEMATIC LIQUID CRYSTAL FLOWS GOVERNED BY THE ERICKSEN-LESLIE EQUATIONS
    Walkington, Noel J.
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2011, 45 (03): : 523 - 540
  • [16] Concentration-cancellation in the Ericksen-Leslie model
    Kortum, Joshua
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2020, 59 (06)
  • [17] ON SINGULARITIES OF ERICKSEN-LESLIE SYSTEM IN DIMENSION THREE
    Huang, Tao
    Wang, Peiyong
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, : 1579 - 1592
  • [18] Well-Posedness of the Ericksen-Leslie System
    Wang, Wei
    Zhang, Pingwen
    Zhang, Zhifei
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2013, 210 (03) : 837 - 855
  • [19] Analysis and Numerical Approximation of Energy-Variational Solutions to the Ericksen-Leslie Equations
    Lasarzik, Robert
    Reiter, Maximilian E. V.
    ACTA APPLICANDAE MATHEMATICAE, 2023, 184 (01)
  • [20] A LINEAR MIXED FINITE ELEMENT SCHEME FOR A NEMATIC ERICKSEN-LESLIE LIQUID CRYSTAL MODEL
    Guillen-Gonzalez, F. M.
    Gutierrez-Santacreu, J. V.
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2013, 47 (05): : 1433 - 1464