Gas Phase Uranyl Activation: Formation of a Uranium Nitrosyl Complex from Uranyl Azide

被引:25
|
作者
Gong, Yu [1 ]
de Jong, Wibe A. [2 ]
Gibson, John K. [1 ]
机构
[1] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA
关键词
CORRELATED MOLECULAR CALCULATIONS; GAUSSIAN-BASIS SETS; THEORETICAL INVESTIGATIONS; INFRARED-SPECTRA; OXO-EXCHANGE; ATOMS; ION; COORDINATION; SILYLATION; REDUCTION;
D O I
10.1021/jacs.5b02420
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Activation of the oxo bond of uranyl, UO22+ Was achieved by collision induced dissociation (CID) of UO2(N-3)Cl-2(-) in a quadrupole ion trap mass spectrometer. The gas phase complex UO2(N-3)Cl-2(-) was produced by,electrospray ionization of solutions of UO2Cl2 and NaN3. CID of UO2(N-3)Cl-2(-) resulted in the loss of N-2 to form UO(NO)Cl-2(-), in which the "inert" uranyl oxo bond has been activated. Formation of UO2Cl2: via N-3 loss was also observed. Density functional theory computations predict that the UO(NO)Cl-2(-) complex has nonplanar C-s symmetry and a singlet ground state. Analysis of the bonding of the UO(NO)Cl-2(-) Complex shows that the side-on bonded NO moiety can be considered as NO3-, suggesting a formal oxidation state of U(VI). Activation of the uranyl oxo bond in UO2(N-3)Cl-2(-) to form UO(NO)Cl-2(-) and N-2 was computed to be endothermic by 169 kJ/mol, which is energetically more favorable than formation of NUOCl2- and UO2Cl2-. The observation of UO2Cl2- during CID is most likely due to the absence of an energy barrier for neutral ligand loss.
引用
收藏
页码:5911 / 5915
页数:5
相关论文
共 50 条
  • [41] URANIUM(IV)-(VI) MIXED-VALENCE COMPLEX AND URANYL COMPLEXES WITH TRIETHYLENETETRAMINE
    KOKARE, MB
    KESAVADAS, T
    INDIAN JOURNAL OF CHEMISTRY SECTION A-INORGANIC BIO-INORGANIC PHYSICAL THEORETICAL & ANALYTICAL CHEMISTRY, 1987, 26 (06): : 516 - 518
  • [42] Redox behavior of cyclo[6]pyrrole in the formation of a uranyl complex
    Melfi, Patricia J.
    Kim, Sung Kuk
    Lee, Jeong Tae
    Bolze, Frederic
    Seidel, Daniel
    Lynch, Vincent M.
    Veauthier, Jacqueline M.
    Gaunt, Andrew J.
    Neu, Mary P.
    Ou, Zhongping
    Kadish, Karl M.
    Fukuzumi, Shunichi
    Ohkubo, Kei
    Sessler, Jonathan L.
    INORGANIC CHEMISTRY, 2007, 46 (13) : 5143 - 5145
  • [43] Determination of intermediates and products of the uranyl aerosol formation in UF6 hydrolysis in the gas phase
    Salvador, Christian Mark
    Richards, Jason M.
    Mahurin, Shannon M.
    Cheng, Meng-Dawn
    Hubbard, Joshua A.
    REACTION CHEMISTRY & ENGINEERING, 2024, 9 (07): : 1776 - 1783
  • [44] THE EFFECTS OF COMPLEX FORMATION ON THE DEACTIVATION OF ELECTRONICALLY EXCITED URANYL IONS
    Wang Zhilin
    Yang Ming
    Zheng Qike
    ACTA PHYSICO-CHIMICA SINICA, 1993, 9 (04) : 569 - 574
  • [45] Metathetical reaction of organic uranyl species with water in the gas phase
    Department of Applied Chemistry, East China Institute of Technology Institution, Fuzhou 344000, China
    不详
    不详
    Kao Teng Hsueh Hsiao Hua Heush Hsueh Pao, 2008, 5 (912-915): : 912 - 915
  • [46] Metathetical reaction of organic uranyl species with water in the gas phase
    Bin, Hu
    Lan-Hui, Chen
    Yan-Fu, Huan
    Xie, Zhang
    Ming, Li
    Hua-Zheng, Liang
    Huan-Wen, Chen
    CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 2008, 29 (05): : 912 - 915
  • [47] Gas-phase complexes containing the uranyl ion and acetone
    Van Stipdonk, MJ
    Chien, W
    Anbalagan, V
    Bulleigh, K
    Hanna, D
    Groenewold, GS
    JOURNAL OF PHYSICAL CHEMISTRY A, 2004, 108 (47): : 10448 - 10457
  • [49] Ultrafiltration of Uranyl Peroxide Nanoclusters for the Separation of Uranium from Aqueous Solution
    Wylie, Ernest M.
    Peruski, Kathryn M.
    Weidman, Jacob L.
    Phillip, William A.
    Burns, Peter C.
    ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (01) : 473 - 479
  • [50] URANYL PEROXIDE PRECIPITATION IN THE RECOVERY OF URANIUM FROM PHOSPHORIC-ACID
    BROWN, RA
    NORRIS, RD
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1980, 180 (AUG): : 35 - FERT