3-D Gabor Convolutional Neural Network for Hyperspectral Image Classification

被引:36
|
作者
Jia, Sen [1 ,2 ]
Liao, Jianhui [1 ,2 ]
Xu, Meng [1 ,2 ]
Li, Yan [1 ]
Zhu, Jiasong [2 ]
Sun, Weiwei [3 ]
Jia, Xiuping [4 ]
Li, Qingquan [2 ]
机构
[1] Shenzhen Univ, Coll Comp Sci & Software Engn, Shenzhen 518060, Peoples R China
[2] Shenzhen Univ, Key Lab Geoenvironm Monitoring Coastal Zone, Minist Nat Resources, Shenzhen 518060, Peoples R China
[3] Ningbo Univ, Coll Architectural Engn, Civil Engn & Environm, Ningbo 315211, Peoples R China
[4] Univ New South Wales, Sch Engn & Informat Technol, Canberra, ACT 2612, Australia
基金
中国国家自然科学基金;
关键词
Feature extraction; Kernel; Training; Hyperspectral imaging; Data mining; Data models; Convolution; Convolutional neural networks (CNNs); Gabor wavelet; hyperspectral image (HSI); DISCRIMINANT-ANALYSIS;
D O I
10.1109/TGRS.2021.3087186
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Due to the detailed spectral information through hundreds of narrow spectral bands provided by hyperspectral image (HSI) data, it can be employed to accurately classify diverse materials of interest, which is one of the core applications of hyperspectral remote sensing technology. In recent years, with the rapid development of deep learning, convolutional neural networks (CNNs) have been successfully applied in many fields, including HSI classification. However, the random gradient descent-based parameter updating scheme is too general and leading to the inefficiency of CNN models. Moreover, the high dimensionality and limited training samples of HSI data also exacerbate the overfitting problem. To tackle these issues, in this article, a novel deep network with multilayer and multibranch architecture, named 3-D Gabor CNN (3DG-CNN), is proposed for HSI classification. More precisely, since the predefined 3-D Gabor filters in multiple scales and orientations could well characterize the internal spatial-spectral structure of HSI data from various perspectives, the 3-D Gabor-modulated kernels (3-D GMKs) are employed to replace the random initialization kernels. Moreover, the specially designed multibranch architecture enables the network to better integrating the scalable property of 3-D Gabor filters; thus, the representative ability and robustness of the extracted features can be greatly improved. Alternatively, the number of network parameters is substantially reduced due to the incorporation of 3-D Gabor modulation, relieving the training complexity and also alleviating the training process from overfitting. Experimental results on four real HSI datasets (including two newly released ones in the literature) have demonstrated that the proposed 3DG-CNN model can achieve better performance than several widely used machine-learning-based and deep-learning-based approaches. For the sake of reproducibility, the codes of the proposed 3DG-CNN model are available at http://jiasen.tech/papers/.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Automatic Design of Convolutional Neural Network for Hyperspectral Image Classification
    Chen, Yushi
    Zhu, Kaiqiang
    Zhu, Lin
    He, Xin
    Ghamisi, Pedram
    Benediktsson, Jon Atli
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (09): : 7048 - 7066
  • [22] Hyperspectral Image Classification Based on Hypergraph and Convolutional Neural Network
    Liu Yuzhen
    Jiang Zhengquan
    Mai Fei
    Zhang Chunhua
    LASER & OPTOELECTRONICS PROGRESS, 2019, 56 (11)
  • [23] A Novel Cubic Convolutional Neural Network for Hyperspectral Image Classification
    Wang, Jinwei
    Song, Xiangbo
    Sun, Le
    Huang, Wei
    Wang, Jin
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2020, 13 : 4133 - 4148
  • [24] Hyperspectral Image Classification Using Modified Convolutional Neural Network
    Kalita, Shashanka
    Biswas, Mantosh
    PROCEEDINGS OF THE 2018 SECOND INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND CONTROL SYSTEMS (ICICCS), 2018, : 1884 - 1889
  • [25] Adaptive Residual Convolutional Neural Network for Hyperspectral Image Classification
    Huang, Hong
    Pu, Chunyu
    Li, Yuan
    Duan, Yule
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2020, 13 : 2520 - 2531
  • [26] Hyperspectral Image Classification With Convolutional Neural Network and Active Learning
    Cao, Xiangyong
    Yao, Jing
    Xu, Zongben
    Meng, Deyu
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (07): : 4604 - 4616
  • [27] CONVOLUTIONAL NEURAL NETWORK FOR COASTAL WETLAND CLASSIFICATION IN HYPERSPECTRAL IMAGE
    Liu, Chang
    Zhang, Mengmeng
    Li, Wei
    Sun, Weiwei
    Tao, Ran
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 5104 - 5107
  • [28] A Lightweight Hybrid Convolutional Neural Network for Hyperspectral Image Classification
    Ma, Xiaohu
    Kang, Xudong
    Qin, Huawei
    Wang, Wuli
    Ren, Guangbo
    Wang, Jianbu
    Liu, Baodi
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [29] Recurrent Feedback Convolutional Neural Network for Hyperspectral Image Classification
    Li, Heng-Chao
    Li, Shuang-Shuang
    Hu, Wen-Shuai
    Feng, Jun-Huan
    Sun, Wei-Wei
    Du, Qian
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [30] A Convolutional Neural Network With Mapping Layers for Hyperspectral Image Classification
    Li, Rui
    Pan, Zhibin
    Wang, Yang
    Wang, Ping
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (05): : 3136 - 3147