Large Angle Optical Access in a Sub-Kelvin Cryostat

被引:4
|
作者
Hahnle, S. [1 ]
Bueno, J. [1 ]
Huiting, R. [1 ]
Yates, S. J. C. [1 ]
Baselmans, J. J. A. [1 ]
机构
[1] SRON Netherlands Inst Space Res, NL-3584 CA Utrecht, Netherlands
基金
欧洲研究理事会;
关键词
Cryostat; Lens-antenna; Kinetic inductance detectors; Cryogenic optics;
D O I
10.1007/s10909-018-1940-1
中图分类号
O59 [应用物理学];
学科分类号
摘要
The development of lens-antenna-coupled aluminum-based microwave kinetic inductance detectors (MKIDs) and on-chip spectrometers needs a dedicated cryogenic setup to measure the beam patterns of the lens-antenna system over a large angular throughput and broad frequency range. This requires a careful design since the MKID has to be cooled to temperatures below 300mK to operate effectively. We developed such a cryostat with a large opening angle theta = +/- 37.8 degrees and an optical access with a low-pass edge at 950 GHz. The system is based upon a commercial pulse tube cooled 3 K system with a He-4-He-3 sorption cooler to allow base temperatures below 300 mK. A careful study of the spectral and geometric throughput was performed to minimize thermal loading on the cold stage, allowing a base temperature of 265 mK. Radio-transparent multi-layer-insulation was employed as a recent development in filter technology to efficiently block near-infrared radiation.
引用
收藏
页码:833 / 840
页数:8
相关论文
共 50 条
  • [1] Large Angle Optical Access in a Sub-Kelvin Cryostat
    S. Hähnle
    J. Bueno
    R. Huiting
    S. J. C. Yates
    J. J. A. Baselmans
    Journal of Low Temperature Physics, 2018, 193 : 833 - 840
  • [2] Sub-kelvin optical cooling of a micromechanical resonator
    Kleckner, Dustin
    Bouwmeester, Dirk
    NATURE, 2006, 444 (7115) : 75 - 78
  • [3] Sub-kelvin optical cooling of a micromechanical resonator
    Dustin Kleckner
    Dirk Bouwmeester
    Nature, 2006, 444 : 75 - 78
  • [4] ANTIHYDROGEN AT SUB-KELVIN TEMPERATURES
    SHLYAPNIKOV, GV
    WALRAVEN, JTM
    SURKOV, EL
    HYPERFINE INTERACTIONS, 1993, 76 (1-4): : 31 - 46
  • [5] Sub-kelvin temperature management in ion traps for optical clocks
    Nordmann, T.
    Didier, A.
    Dolezal, M.
    Balling, P.
    Burgermeister, T.
    Mehlstaubler, T. E.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2020, 91 (11):
  • [6] Homogeneous linewidth behavior of narrow optical emitters at sub-kelvin temperatures
    Lin, X.
    Hartman, M. T.
    Goldner, P.
    Fang, B.
    Le Coq, Y.
    Seidelin, S.
    APPLIED PHYSICS LETTERS, 2025, 126 (05)
  • [7] Sub-Kelvin ac magnetic susceptometry
    Schmidt, M. A.
    Silevitch, D. M.
    Woo, N.
    Rosenbaum, T. F.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2013, 84 (01):
  • [8] SPICA sub-Kelvin cryogenic chains
    Duband, L.
    Duval, J. M.
    Luchier, N.
    Prouve, T.
    CRYOGENICS, 2012, 52 (4-6) : 145 - 151
  • [9] Digital frequency multiplexing with sub-Kelvin SQUIDs
    Lowitz, Amy E.
    Bender, Amy N.
    Dobbs, Matthew A.
    Gilbert, Adam J.
    MILLIMETER, SUBMILLIMETER, AND FAR-INFRARED DETECTORS AND INSTRUMENTATION FOR ASTRONOMY IX, 2018, 10708
  • [10] The LiteBIRD Satellite Mission: Sub-Kelvin Instrument
    A. Suzuki
    P. A. R. Ade
    Y. Akiba
    D. Alonso
    K. Arnold
    J. Aumont
    C. Baccigalupi
    D. Barron
    S. Basak
    S. Beckman
    J. Borrill
    F. Boulanger
    M. Bucher
    E. Calabrese
    Y. Chinone
    S. Cho
    B. Crill
    A. Cukierman
    D. W. Curtis
    T. de Haan
    M. Dobbs
    A. Dominjon
    T. Dotani
    L. Duband
    A. Ducout
    J. Dunkley
    J. M. Duval
    T. Elleflot
    H. K. Eriksen
    J. Errard
    J. Fischer
    T. Fujino
    T. Funaki
    U. Fuskeland
    K. Ganga
    N. Goeckner-Wald
    J. Grain
    N. W. Halverson
    T. Hamada
    T. Hasebe
    M. Hasegawa
    K. Hattori
    M. Hattori
    L. Hayes
    M. Hazumi
    N. Hidehira
    C. A. Hill
    G. Hilton
    J. Hubmayr
    K. Ichiki
    Journal of Low Temperature Physics, 2018, 193 : 1048 - 1056