Convolutional neural networks and particle filter for UAV localization

被引:4
|
作者
Couturier, Andy [1 ]
Akhloufi, Moulay A. [1 ]
机构
[1] Univ Moncton, Dept Comp Sci, Percept Robot & Intelligent Machines Res Grp PRIM, 18 Antonine Maillet Ave, Moncton, NB E1A 3E9, Canada
来源
基金
加拿大自然科学与工程研究理事会;
关键词
UAV; Relative localization; GPS denied navigation; GNSS; Particle filters; Convolutional Neural Networks; DRONE; PRECISION; MODEL;
D O I
10.1117/12.2585986
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Unmanned aerial vehicles (UAV) are now used in a large number of applications. In order to accomplish autonomous navigation, UAVs must be equipped with robust and accurate localization systems. Most localization solutions available today rely on global navigation satellite systems (GNSS). However, such systems are known to introduce instabilities as a result of interference. More advanced solutions now use computer vision. While deep learning has now become the state-of-the-art in many areas, few attempts were made to use it for localization. In this paper, we present an entirely new type of approach based on convolutional neural networks (CNN). The network is trained with a new purpose-built dataset constructed using publicly available aerial imagery. Features extracted with the model are integrated in a particle filter for localization. Initial validation using real-world data, indicated that the approach is able to accurately estimate the localization of a quadcopter.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Improving Fingerprint Indoor Localization Using Convolutional Neural Networks
    Sun, Danshi
    Wei, Erhu
    Yang, Li
    Xu, Shiyi
    IEEE ACCESS, 2020, 8 : 193396 - 193411
  • [32] Detection and Localization of Ultrasound Scatterers Using Convolutional Neural Networks
    Youn, Jihwan
    Ommen, Martin Lind
    Stuart, Matthias Bo
    Thomsen, Erik Vilain
    Larsen, Niels Bent
    Jensen, Jorgen Arendt
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2020, 39 (12) : 3855 - 3867
  • [33] Localization-based Visual Tracking with Convolutional Neural Networks
    Moridi, Abolfazl
    Azimifar, Zohreh
    2016 24TH IRANIAN CONFERENCE ON ELECTRICAL ENGINEERING (ICEE), 2016, : 661 - 664
  • [34] Localization of Demyelinating Plaques in MRI using Convolutional Neural Networks
    Stasiak, Bartlomiej
    Tarasiuk, Pawel
    Michalska, Izabela
    Tomczyk, Arkadiusz
    Szczepaniak, Piotr S.
    PROCEEDINGS OF THE 10TH INTERNATIONAL JOINT CONFERENCE ON BIOMEDICAL ENGINEERING SYSTEMS AND TECHNOLOGIES, VOL 2: BIOIMAGING, 2017, : 55 - 64
  • [35] Boosting Self-localization with Graph Convolutional Neural Networks
    Koji, Takeda
    Kanji, Tanaka
    VISAPP: PROCEEDINGS OF THE 16TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS - VOL. 5: VISAPP, 2021, : 861 - 868
  • [36] Simultaneous Object Detection and Localization using Convolutional Neural Networks
    Zahra Ouadiay, Fatima
    Bouftaih, Hamza
    Bouyakhf, El Houssine
    Majid Himmi, M.
    2018 INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS AND COMPUTER VISION (ISCV2018), 2018,
  • [37] PILC: Passive Indoor Localization Based on Convolutional Neural Networks
    Cai, Chenwei
    Deng, Li
    Zheng, Mingyang
    Li, Shufang
    PROCEEDINGS OF 5TH IEEE CONFERENCE ON UBIQUITOUS POSITIONING, INDOOR NAVIGATION AND LOCATION-BASED SERVICES (UPINLBS), 2018, : 509 - 514
  • [38] Deep Convolutional Neural Networks for Indoor Localization with CSI Images
    Wang, Xuyu
    Wang, Xiangyu
    Mao, Shiwen
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2020, 7 (01): : 316 - 327
  • [39] Concrete Defect Localization Based on Multilevel Convolutional Neural Networks
    Wang, Yameng
    Wang, Lihua
    Ye, Wenjing
    Zhang, Fengyi
    Pan, Yongdong
    Li, Yan
    MATERIALS, 2024, 17 (15)
  • [40] Localization Convolutional Neural Networks Using Angle of Arrival Images
    Comiter, Marcus
    Kung, H. T.
    2018 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2018,