Hyperspectral Image Denoising Based on Nonconvex Low-Rank Tensor Approximation and lp Norm Regularization

被引:0
|
作者
Li Bo [1 ]
Luo Xuegang [2 ]
Lv Junrui [2 ]
机构
[1] Sichuan Tourism Univ, Sch Informat & Engn, Chengdu 610100, Sichuan, Peoples R China
[2] Panzhihua Univ, Sch Math & Comp Sci, Panzhihua 617000, Peoples R China
关键词
MIXED NOISE REMOVAL; MINIMIZATION; RESTORATION; RECOVERY;
D O I
10.1155/2021/4500957
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A new nonconvex smooth rank approximation model is proposed to deal with HSI mixed noise in this paper. The low-rank matrix with Laplace function regularization is used to approximate the nuclear norm, and its performance is superior to the nuclear norm regularization. A new phase congruency l(p) norm model is proposed to constrain the spatial structure information of hyperspectral images, to solve the phenomenon of "artificial artifact" in the process of hyperspectral image denoising. This model not only makes use of the low-rank characteristic of the hyperspectral image accurately, but also combines the structural information of all bands and the local information of the neighborhood, and then based on the Alternating Direction Method of Multipliers (ADMM), an optimization method for solving the model is proposed. The results of simulation and real data experiments show that the proposed method is more effective than the competcing state-of-the-art denoising methods.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Tensor Recovery via Nonconvex Low-Rank Approximation
    Chen, Lin
    Jiang, Xue
    Liu, Xingzhao
    Zhou, Zhixin
    28TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2020), 2021, : 710 - 714
  • [32] A LOW-RANK TENSOR REGULARIZATION STRATEGY FOR HYPERSPECTRAL UNMIXING
    Imbiriba, Tales
    Borsoi, Ricardo Augusto
    Moreira Bermudez, Jose Carlos
    2018 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP (SSP), 2018, : 373 - 377
  • [33] Hyperspectral Image Denoising via Weighted Multidirectional Low-Rank Tensor Recovery
    Su, Yanchi
    Zhu, Haoran
    Wong, Ka-Chun
    Chang, Yi
    Li, Xiangtao
    IEEE TRANSACTIONS ON CYBERNETICS, 2023, 53 (05) : 2753 - 2766
  • [34] Adaptive Regularized Low-Rank Tensor Decomposition for Hyperspectral Image Denoising and Destriping
    Li, Dongyi
    Chu, Dong
    Guan, Xiaobin
    He, Wei
    Shen, Huanfeng
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 17
  • [35] Low-rank tensor embedded deep neural network for hyperspectral image denoising
    Tu K.
    Xiong F.
    Hou X.
    National Remote Sensing Bulletin, 2024, 28 (01) : 121 - 131
  • [36] Hyperspectral denoising based on the principal component low-rank tensor decomposition
    Wu, Hao
    Yue, Ruihan
    Gao, Ruixue
    Wen, Rui
    Feng, Jun
    Wei, Youhua
    OPEN GEOSCIENCES, 2022, 14 (01) : 518 - 529
  • [37] Tensor-Based Low-Rank and Sparse Prior Information Constraints for Hyperspectral Image Denoising
    Wang, Guxi
    Han, Hongwei
    Carranza, Emmanuel John M.
    Guo, Si
    Guo, Ke
    Xiao, Keyan
    IEEE ACCESS, 2020, 8 : 102935 - 102946
  • [38] Color Image Denoising Based on Low-rank Tensor Train
    Zhang, Yang
    Han, Zhi
    Tang, Yandong
    TENTH INTERNATIONAL CONFERENCE ON GRAPHICS AND IMAGE PROCESSING (ICGIP 2018), 2019, 11069
  • [39] Hyperspectral Image Super-Resolution via Nonlocal Low-Rank Tensor Approximation and Total Variation Regularization
    Wang, Yao
    Chen, Xi'ai
    Han, Zhi
    He, Shiying
    REMOTE SENSING, 2017, 9 (12):
  • [40] Total variation regularized low-rank tensor approximation for color image denoising
    Chen, Yongyong
    Zhou, Yicong
    2018 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2018, : 2523 - 2527