A Priori Error Estimates and Superconvergence of Splitting Positive Definite Mixed Finite Element Methods for Pseudo-Hyperbolic Integro-Differential Optimal Control Problems

被引:1
|
作者
Xu, C. [1 ]
机构
[1] Beihua Univ, Sch Math & Stat, Jilin 132013, Jilin, Peoples R China
关键词
Pseudo-hyperbolic integro-differential equations; Optimal control problems; A priori error estimates; Superconvergence; Splitting positive definite mixed finite element methods;
D O I
10.1134/S1995423920010024
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we discuss a priori error estimates and superconvergence of splitting positive definite mixed finite element methods for optimal control problems governed by pseudo-hyperbolic integro-differential equations. The state variables and co-state variables are approximated by the lowest order Raviart-Thomas mixed finite element functions, and the control variable is approximated by piecewise constant functions. First, we derive a priori error estimates for the control variable, state variables, and co-state variables. Second, we obtain a superconvergence result for the control variable.
引用
收藏
页码:17 / 33
页数:17
相关论文
共 50 条