Superconvergence Analysis of Splitting Positive Definite Nonconforming Mixed Finite Element Method for Pseudo-hyperbolic Equations

被引:12
|
作者
Shi, Dong-yang [1 ]
Tang, Qi-li [1 ,2 ]
机构
[1] Zhengzhou Univ, Sch Math & Stat, Zhengzhou 450001, Peoples R China
[2] Henan Univ Sci & Technol, Sch Math & Stat, Luoyang 471023, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
pseudo-hyperbolic equations; splitting positive definite nonconforming mixed finite element method; superclose; superconvergence; SQUARES GALERKIN PROCEDURES; PSEUDOHYPERBOLIC EQUATIONS; LAGRANGIAN-MULTIPLIERS; DIFFUSION PROBLEMS; STOKES EQUATIONS; APPROXIMATION; EXISTENCE; SCHEME; MESHES;
D O I
10.1007/s10255-013-0261-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a new splitting positive definite nonconforming mixed finite element method is proposed for pseudo-hyperbolic equations, in which a quasi-Wilson quadrilateral element is used for the flux p, and the bilinear element is used for u. Superconvergence results in parallel to.parallel to(div,h) norm for p and optimal error estimates in L-2 norm for u are derived for both semi-discrete and fully discrete schemes under almost uniform meshes.
引用
收藏
页码:843 / 854
页数:12
相关论文
共 50 条