Combining inference and search for the propositional satisfiability problem

被引:0
|
作者
Drake, L [1 ]
Frisch, A [1 ]
Walsh, T [1 ]
机构
[1] Univ York, Dept Comp Sci, York YO10 5DD, N Yorkshire, England
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The most effective complete method for testing propositional satisfiability (SAT) is backtracking search. Recent research suggests that adding more inference to SAT search procedures can improve their performance. This paper presents two ways to combine neighbour resolution (one such inference technique) with search.
引用
收藏
页码:982 / 982
页数:1
相关论文
共 50 条
  • [41] Koepke Machines and Satisfiability for Infinitary Propositional Languages
    Carl, Merlin
    Loewe, Benedikt
    Rin, Benjamin G.
    UNVEILING DYNAMICS AND COMPLEXITY, CIE 2017, 2017, 10307 : 187 - 197
  • [43] Symmetric Neural Networks and Propositional Logic Satisfiability
    Pinkas, Gadi
    NEURAL COMPUTATION, 1991, 3 (02) : 282 - 291
  • [44] Substitutional definition of satisfiability in classical propositional logic
    Belov, A
    Stachniak, Z
    THEORY AND APPLICATIONS OF SATISFIABILITY TESTING, PROCEEDINGS, 2005, 3569 : 31 - 45
  • [45] A finite state intersection approach to propositional satisfiability
    Castano, Jose M.
    Castano, Rodrigo
    THEORETICAL COMPUTER SCIENCE, 2012, 450 : 92 - 108
  • [46] Propositional satisfiability and constraint programming: A comparative survey
    Bordeaux, Lucas
    Hamadi, Youssef
    Zhang, Lintao
    ACM COMPUTING SURVEYS, 2006, 38 (04)
  • [47] Planning for Temporally Extended Goals as Propositional Satisfiability
    Mattmueller, Robert
    Rintanen, Jussi
    20TH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2007, : 1966 - 1971
  • [48] Monte-Carlo Tree Search for the Maximum Satisfiability Problem
    Goffinet, Jack
    Ramanujan, Raghuram
    PRINCIPLES AND PRACTICE OF CONSTRAINT PROGRAMMING, CP 2016, 2016, 9892 : 251 - 267
  • [49] Propositional proof systems based on maximum satisfiability
    Bonet, Maria Luisa
    Buss, Sam
    Ignatiev, Alexey
    Morgado, Antonio
    Marques-Silva, Joao
    ARTIFICIAL INTELLIGENCE, 2021, 300
  • [50] On the Satisfiability and Validity Problems in the Propositional Godel Logic
    Guller, Dusan
    COMPUTATIONAL INTELLIGENCE, 2012, 399 : 211 - 227