Liquidity Risk Portfolio Optimization Using Swarm Intelligence

被引:0
|
作者
Niu, Ben [1 ,2 ]
Xiao, Han [1 ]
Tan, Lijing [3 ]
Fan, Yan [1 ]
Rao, Junjun [1 ]
机构
[1] Shenzhen Univ, Coll Management, Shenzhen 518060, Peoples R China
[2] Chinese Acad Sci, Hefei Inst Intelligent Mach, Hefei 230031, Peoples R China
[3] Measurement Specialties Inc, Shenzhen 508107, Peoples R China
关键词
Liquidity risk; risk appetite; genetic algorithm; bacterial foraging optimization; particle swarm optimization; SELECTION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The liquidity risk is one of the most important adjustable parameters of the portfolio selection. This paper proposes an improved model considering the liquidity risk and market risk, which makes it more suitable for the actual situation. In the improved model we take into account the risk appetite of investors and other psychological factors. To solve the improved portfolio optimization model with complex constraints, we present a comparative study for three swarm intelligence methods namely genetic algorithm (GA), bacterial foraging optimization (BFO) and particle swarm optimization (PS0). The primary results demonstrate their effectiveness and efficiency.
引用
收藏
页码:551 / +
页数:2
相关论文
共 50 条
  • [1] Portfolio Risk Optimisation and Diversification Using Swarm Intelligence
    Mazumdar, Kingshuk
    Zhang, Dongmo
    Guo, Yi
    [J]. PRICAI 2019: TRENDS IN ARTIFICIAL INTELLIGENCE, PT III, 2019, 11672 : 740 - 747
  • [2] Swarm Intelligence Algorithms for Portfolio Optimization
    Zhu, Hanhong
    Chen, Yun
    Wang, Kesheng
    [J]. ADVANCES IN SWARM INTELLIGENCE, PT 1, PROCEEDINGS, 2010, 6145 : 306 - +
  • [3] LIQUIDITY RISK AND INSTABILITIES IN PORTFOLIO OPTIMIZATION
    Caccioli, Fabio
    Kondor, Imre
    Marsili, Matteo
    Still, Susanne
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL AND APPLIED FINANCE, 2016, 19 (05)
  • [4] Portfolio selection and unsystematic risk optimisation using swarm intelligence
    Kingshuk Mazumdar
    Dongmo Zhang
    Yi Guo
    [J]. Journal of Banking and Financial Technology, 2020, 4 (1): : 1 - 14
  • [5] A survey of swarm intelligence for portfolio optimization: Algorithms and applications
    Ertenlice, Okkes
    Kalayci, Can B.
    [J]. SWARM AND EVOLUTIONARY COMPUTATION, 2018, 39 : 36 - 52
  • [6] Bacterial foraging based approaches to portfolio optimization with liquidity risk
    Niu, Ben
    Fan, Yan
    Xiao, Han
    Xue, Bing
    [J]. NEUROCOMPUTING, 2012, 98 : 90 - 100
  • [7] Modified Bacterial Foraging Optimizer for Liquidity Risk Portfolio Optimization
    Niu, Ben
    Xiao, Han
    Tan, Lijing
    Li, Li
    Rao, Junjun
    [J]. LIFE SYSTEM MODELING AND INTELLIGENT COMPUTING, PT II, 2010, 98 : 16 - +
  • [8] Artificial Intelligence based method for Portfolio Selection Using particle swarm optimization and gentic algorithms
    Gonzalez Cortes, Daniel
    Cortes Jofre, Aida Jenny
    San Martin, Lilian
    [J]. 2018 CONGRESO INTERNACIONAL DE INNOVACION Y TENDENCIAS EN INGENIERIA (CONIITI), 2018,
  • [9] Swarm Intelligence Algorithms for Portfolio Optimization Problems: Overview and Recent Advances
    Chen, Yinnan
    Zhao, Xinchao
    Yuan, Jianmei
    [J]. MOBILE INFORMATION SYSTEMS, 2022, 2022
  • [10] Portfolio insurance with liquidity risk
    Matsumoto K.
    [J]. Asia-Pacific Financial Markets, 2007, 14 (4) : 363 - 386