Portfolio Risk Optimisation and Diversification Using Swarm Intelligence

被引:0
|
作者
Mazumdar, Kingshuk [1 ]
Zhang, Dongmo [1 ]
Guo, Yi [1 ]
机构
[1] Western Sydney Univ, Penrith, NSW, Australia
关键词
Portfolio optimisation; Particle Swarm Optimization; PSO; Portfolio diversification; Risk Parity; Risk budgeting; Swarm intelligence;
D O I
10.1007/978-3-030-29894-4_60
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The ongoing global economic turmoil has got the asset management industry look into new ways of financial risk management. Portfolio optimisation and risk budgeting are at the heart of most computational finance studies by academics and practitioners. In this paper, we introduce and analyse a method to construct an equity portfolio based on decomposition of marginal asset risk contribution of each stock in a given universe and then formulate a diversification problem for unsystematic risk as an optimisation problem. We have illustrated the performance of our method by comparing with another diversification technique, known as the Risk Parity portfolio, and then benchmark our results against the global major indices.
引用
收藏
页码:740 / 747
页数:8
相关论文
共 50 条
  • [1] Portfolio selection and unsystematic risk optimisation using swarm intelligence
    Kingshuk Mazumdar
    Dongmo Zhang
    Yi Guo
    [J]. Journal of Banking and Financial Technology, 2020, 4 (1): : 1 - 14
  • [2] Application of Swarm Intelligence to Portfolio Optimisation
    Sethia, Akhil Mukesh
    [J]. 2018 INTERNATIONAL CONFERENCE ON COMPUTING, POWER AND COMMUNICATION TECHNOLOGIES (GUCON), 2018, : 1022 - 1026
  • [3] Liquidity Risk Portfolio Optimization Using Swarm Intelligence
    Niu, Ben
    Xiao, Han
    Tan, Lijing
    Fan, Yan
    Rao, Junjun
    [J]. ADVANCED INTELLIGENT COMPUTING THEORIES AND APPLICATIONS, 2010, 93 : 551 - +
  • [4] Portfolio optimisation and diversification
    King, David
    [J]. JOURNAL OF ASSET MANAGEMENT, 2007, 8 (05) : 296 - 307
  • [5] Portfolio optimisation and diversification
    David King
    [J]. Journal of Asset Management, 2007, 8 (5) : 296 - 307
  • [6] On Portfolio Risk Diversification
    Takada, Hellinton H.
    Stern, Julio M.
    [J]. BAYESIAN INFERENCE AND MAXIMUM ENTROPY METHODS IN SCIENCE AND ENGINEERING (MAXENT 2016), 2017, 1853
  • [7] Swarm intelligence in optimisation problems
    Denby, B
    Le Hégarat-Mascle, S
    [J]. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2003, 502 (2-3): : 364 - 368
  • [8] Portfolio optimisation using alternative risk measures
    Lorimer, Douglas Austen
    van Schalkwyk, Cornelis Hendrik
    Szczygielski, Jan Jakub
    [J]. FINANCE RESEARCH LETTERS, 2024, 67
  • [9] Operation Parameters Optimisation of a Machine Swarm Using Artificial Intelligence
    Zhong, Lin
    Rao, Wei
    Zhang, Xiaohang
    Zhang, Zhibin
    Krolczyk, Grzegorz
    [J]. ELEKTRONIKA IR ELEKTROTECHNIKA, 2023, 29 (05) : 79 - 85
  • [10] Swarm Intelligence Algorithms for Portfolio Optimization
    Zhu, Hanhong
    Chen, Yun
    Wang, Kesheng
    [J]. ADVANCES IN SWARM INTELLIGENCE, PT 1, PROCEEDINGS, 2010, 6145 : 306 - +