Rotating machinery fault diagnosis based on impact feature extraction deep neural network

被引:14
|
作者
Hu, Aijun [1 ]
Sun, Junhao [1 ]
Xiang, Ling [1 ]
Xu, Yonggang [2 ]
机构
[1] North China Elect Power Univ, Dept Mech Engn, Baoding 071003, Peoples R China
[2] Beijing Univ Technol, Beijing Engn Res Ctr Precis Measurement Technol &, Beijing 100124, Peoples R China
基金
中国国家自然科学基金;
关键词
impact feature; wavelet convolution kernel; interpretability; deep learning; gearbox; rolling bearing;
D O I
10.1088/1361-6501/ac7eb1
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Gears and bearings are important components in rotating machinery and are crucial for the safety and operation of the whole mechanical system. Intelligent fault diagnosis methods based on deep-learning algorithms have undergone rapid development in recent years. Despite this, integrating fault features in a deep network construction remains a challenge for intelligent fault diagnosis of rotating machinery. In this paper, a novel impact feature extraction deep neural network (IFE-DN) is proposed for intelligent gear and bearing fault diagnosis. An improved three-layer Laplace wavelet kernel convolutional neural network (LW-CNN), where the Laplace wavelet kernel is designed in the first convolutional layer, is constructed to extract and enhance the impact features in the vibration signal. Using a visualized heat map, the physical meaning of the LW-CNN's extracted features is explained and the interpretability of the network model is enhanced. The wavelet function selection in the deep neural network is also discussed. The extracted features are transferred to a primary capsule layer and a digital capsule layer. With a feature vector converting process and dynamic routing algorithm, more detailed features are optimized and the fault types are classified. Four experimental data sets from different laboratories are used to verify the performance of the proposed model, and t-distributed stochastic neighbour embedding is carried out to visually analyze the extracted features in different layers. The results of the analysis of gear and bearing faults of different types and defect sizes show that the IFE-DN presents significant accuracy and satisfactory generalization ability.
引用
下载
收藏
页数:16
相关论文
共 50 条
  • [31] An intelligent fault diagnosis method for rotating machinery based on data fusion and deep residual neural network
    Peng, Binsen
    Xia, Hong
    Lv, Xinzhi
    Annor-Nyarko, M.
    Zhu, Shaomin
    Liu, Yongkuo
    Zhang, Jiyu
    APPLIED INTELLIGENCE, 2022, 52 (03) : 3051 - 3065
  • [32] Multi-scale deep neural network for fault diagnosis method of rotating machinery
    Xie, Yining
    Liu, Wang
    Liu, Xiu
    Chen, Deyun
    Guan, Guohui
    He, Yongjun
    FERROELECTRICS, 2023, 602 (01) : 215 - 230
  • [33] Adaptive resize-residual deep neural network for fault diagnosis of rotating machinery
    Zou, Li
    Lam, Heung Fai
    Hu, Jun
    STRUCTURAL HEALTH MONITORING-AN INTERNATIONAL JOURNAL, 2023, 22 (04): : 2193 - 2213
  • [34] Cross-domain fault diagnosis of rotating machinery based on graph feature extraction
    Wang, Pei
    Liu, Jie
    Zhou, Jianzhong
    Duan, Ran
    Jiang, Wei
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2023, 34 (02)
  • [35] Research on Rotating Machinery Fault Diagnosis Based on Multi-Strategy Feature Extraction
    Song, Yadi
    Wang, Haibo
    Zhao, Chuanzhe
    Wang, Ronglin
    Li, Pengtao
    Li, Zhifeng
    Tribology Transactions, 2024, 67 (06) : 1117 - 1131
  • [36] Image feature extraction based on HOG and its application to fault diagnosis for rotating machinery
    Chen, Jiayu
    Zhou, Dong
    Wang, Yang
    Fu, Hongyong
    Wang, Mingfang
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2018, 34 (06) : 3403 - 3412
  • [37] Fault diagnosis of rotating machinery based on time-frequency image feature extraction
    Zhang, Shiyi
    Zhang, Laigang
    Zhao, Teng
    Mahmoud Mohamed Selim
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2020, 39 (04) : 5193 - 5200
  • [38] Feature extraction method in fault diagnosis based on neural network
    Yuan, Haiying
    Chen, Guangju
    Xie, Yongle
    Yi Qi Yi Biao Xue Bao/Chinese Journal of Scientific Instrument, 2007, 28 (01): : 90 - 94
  • [39] Sparse representation learning for fault feature extraction and diagnosis of rotating machinery
    Ma, Sai
    Han, Qinkai
    Chu, Fulei
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 232
  • [40] A multi-feature fusion-based domain adversarial neural network for fault diagnosis of rotating machinery
    Zhang, Dong
    Zhang, Lili
    MEASUREMENT, 2022, 200