Solving EHL problems using iterative, multigrid, and homotopy methods

被引:16
|
作者
Nurgat, E [1 ]
Berzins, M
Scales, L
机构
[1] Univ Leeds, Sch Comp Studies, Leeds LS2 9JT, W Yorkshire, England
[2] Shell Res & Technol Ctr Thornton, Chester CH1 3SH, Cheshire, England
来源
关键词
D O I
10.1115/1.2833805
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The numerical solution of ElastoHydrodynamic Lubrication (EHL) point contact problems requires the solution of highly nonlinear systems of equations which pose a formidable computational challenge. Multigrid,methods provide one efficient approach. EHL problems solved using a single grid and multigrid will be compared and contrasted with a homotopy method which works on the concept of deforming one problem into another by the continuous variation of a single parameter. Both the multigrid and the single grid method employ a new relaxation scheme. Numerical results on demanding test problems will be used to compare these methods and suggestions for future developments to produce robust solvers will be made.
引用
收藏
页码:28 / 33
页数:6
相关论文
共 50 条
  • [31] MULTICOMPONENT ITERATIVE METHODS SOLVING STATIONARY PROBLEMS OF MATHEMATICAL PHYSICS
    Abrashina-Zhadaeva, N. G.
    Egorov, A. A.
    MATHEMATICAL MODELLING AND ANALYSIS, 2008, 13 (03) : 313 - 326
  • [32] Iterative splitting methods for solving time-dependent problems
    Geiser, Juergen
    APPLIED MATHEMATICS LETTERS, 2012, 25 (05) : 793 - 797
  • [33] Improved PHSS iterative methods for solving saddle point problems
    Wang, Ke
    Di, Jingjing
    Liu, Don
    NUMERICAL ALGORITHMS, 2016, 71 (04) : 753 - 773
  • [34] PRECONDITIONED ITERATIVE METHODS FOR SOLVING LINEAR LEAST SQUARES PROBLEMS
    Bru, Rafael
    Marin, Jose
    Mas, Jose
    Tuma, Miroslav
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2014, 36 (04): : A2002 - A2022
  • [35] A CLASS OF ITERATIVE METHODS FOR SOLVING SADDLE-POINT PROBLEMS
    BANK, RE
    WELFERT, BD
    YSERENTANT, H
    NUMERISCHE MATHEMATIK, 1990, 56 (07) : 645 - 666
  • [36] Iterative methods for solving nonlinear problems of nuclear reactor criticality
    A. M. Kuz’min
    Physics of Atomic Nuclei, 2012, 75 : 1551 - 1556
  • [37] Design and multidimensional extension of iterative methods for solving nonlinear problems
    Artidiello, S.
    Cordero, Alicia
    Torregrosa, Juan R.
    Vassileva, M. P.
    APPLIED MATHEMATICS AND COMPUTATION, 2017, 293 : 194 - 203
  • [38] ITERATIVE METHODS FOR SOLVING PROBLEMS IN MULTICOMPONENT DISTILLATION AT STEADY STATE
    BILLINGSLEY, DS
    BOYNTON, GW
    AICHE JOURNAL, 1971, 17 (01) : 65 - +
  • [39] Iterative methods of solving stochastic convex feasibility problems and applications
    Butnariu, D
    Iusem, AN
    Burachik, RS
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2000, 15 (03) : 269 - 307
  • [40] Iterative Methods for Solving Nonlinear Problems of Nuclear Reactor Criticality
    Kuz'min, A. M.
    PHYSICS OF ATOMIC NUCLEI, 2012, 75 (13) : 1551 - 1556