Design, execution, and analysis of pooled in vitro CRISPR/Cas9 screens

被引:54
|
作者
Miles, Linde A. [1 ]
Garippa, Ralph J. [2 ]
Poirier, John T. [3 ,4 ,5 ]
机构
[1] Johns Hopkins Univ, Dept Pharmacol & Mol Sci, Pharmacol Grad Training Program, Baltimore, MD USA
[2] Mem Sloan Kettering Canc Ctr, RNAi Core Facil, 1275 York Ave, New York, NY 10021 USA
[3] Mem Sloan Kettering Canc Ctr, Dept Med, 1275 York Ave, New York, NY 10021 USA
[4] Mem Sloan Kettering Canc Ctr, Mol Pharmacol Program, 1275 York Ave, New York, NY 10021 USA
[5] Weill Cornell Med Coll, New York, NY USA
关键词
CRISPR; Libraries; Screening; sgRNA; ESSENTIAL GENES; RNA-INTERFERENCE; HUMAN-CELLS; CRISPR-CAS9; SYSTEM; HUMAN GENOME; CANCER; IDENTIFICATION; ACTIVATION; EXPRESSION; MICROARRAY;
D O I
10.1111/febs.13770
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The recently described clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 technology has proven to be an exquisitely powerful and invaluable method of genetic manipulation and/or modification. As such, many researchers have realized the potential of using the CRISPR/Cas9 system as a novel screening method for the identification of important proteins in biological processes and have designed short guide RNA libraries for an in vitro screening. The seminal papers describing these libraries offer valuable information regarding methods for generating the short guide RNA libraries, creating cell lines containing these libraries, and specific details regarding the screening workflow. However, certain considerations are often overlooked that may be important when planning and performing a screen, including which CRISPR library to use and how to best analyze the resulting screen data. In this review, we offer suggestions to answer some of these questions that are not covered as deeply in the papers describing the available CRISPR libraries for an in vitro screening.
引用
收藏
页码:3170 / 3180
页数:11
相关论文
共 50 条
  • [41] CRISPR-UMI : single-cell lineage tracing of pooled CRISPR-Cas9 screens
    Michlits, Georg
    Hubmann, Maria
    Wu, Szu-Hsien
    Vainorius, Gintautas
    Budusan, Elena
    Zhuk, Sergei
    Burkard, Thomas R.
    Novatchkova, Maria
    Aichinger, Martin
    Lu, Yiqing
    Reece-Hoyes, John
    Nitsch, Roberto
    Schramek, Daniel
    Hoepfner, Dominic
    Elling, Ulrich
    NATURE METHODS, 2017, 14 (12) : 1191 - +
  • [42] Clonal dynamics limits detection of selection in tumour xenograft CRISPR/Cas9 screens
    Tet Woo Lee
    Francis W. Hunter
    Peter Tsai
    Cristin G. Print
    William R. Wilson
    Stephen M. F. Jamieson
    Cancer Gene Therapy, 2023, 30 : 1610 - 1623
  • [43] Strategies in the delivery of Cas9 ribonucleoprotein for CRISPR/Cas9 genome editing
    Zhang, Song
    Shen, Jiangtao
    Li, Dali
    Cheng, Yiyun
    THERANOSTICS, 2021, 11 (02): : 614 - 648
  • [44] CRISPR/CAS9 GENE EDITING
    不详
    CHEMICAL & ENGINEERING NEWS, 2015, : 26 - 27
  • [45] Cas9 Targeting and the CRISPR Revolution
    Barrangou, Rodolphe
    SCIENCE, 2014, 344 (6185) : 707 - 708
  • [47] CRISPR/Cas9 as a Mutagenic Factor
    Shumega, Andrey R.
    Pavlov, Youri I.
    Chirinskaite, Angelina V.
    Rubel, Aleksandr A.
    Inge-Vechtomov, Sergey G.
    Stepchenkova, Elena I.
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (02)
  • [48] Photoactivatable CRISPR/Cas9 System
    E. A. Akhmetova
    V. M. Golyshev
    I. P. Vokhtantcev
    M. I. Meschaninova
    A. G. Venyaminova
    D. S. Novopashina
    Russian Journal of Bioorganic Chemistry, 2021, 47 : 496 - 504
  • [49] Controlling CRISPR–Cas9 activity
    Sarah Crunkhorn
    Nature Reviews Drug Discovery, 2019, 18 (7) : 500 - 500
  • [50] Liposomal delivery of CRISPR/Cas9
    Zhen, Shuai
    Li, Xu
    CANCER GENE THERAPY, 2020, 27 (7-8) : 515 - 527