Monitoring deforestation in Jordan using deep semantic segmentation with satellite imagery

被引:23
|
作者
Alzu'bi, Ahmad [1 ]
Alsmadi, Lujain [1 ]
机构
[1] Jordan Univ Sci & Technol, Dept Comp Sci, Irbid 22110, Jordan
关键词
Deforestationmonitoring; Semanticsegmentation; Deeplearning; Jordanforests; Remotesensing; REMOTE-SENSING DATA; FOREST; CLASSIFICATION;
D O I
10.1016/j.ecoinf.2022.101745
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Jordan is witnessing major transformations in its environmental and topographic features, where the desert dominates a large part of the territory, with very limited forest areas. Over the last three decades, Jordan has lost about a third of its natural forests at an annual rate of 1.6%. In this study, we develop a deep learning model to automatically monitor deforestation in Jordan based on the semantic segmentation of multitemporal Landsat-8 satellite images. Very few studies and datasets are devoted to monitoring forest cover changes using semantic image segmentation with deep neural networks. Therefore, we have collected a new benchmarking dataset of Jordanian forests between 2010 and 2020. The proposed model includes an efficient encoder-decoder archi-tecture, with which we can extract a set of discriminating features that semantically assign every key image pixel into either forest or non-forest classes. The deep architecture is first initialised by a CNN-based pre-trained model and then it is fine-tuned on the forest images through an effective transfer learning procedure to improve its generalisation ability. Then, a set of key features are extracted by encoding each forest image into low -dimensional semantic maps to formulate the generic descriptors used in image segmentation. Finally, the output of the segmentation process is used to detect any dissimilarity in the forest area or boundaries using an absolute pixel-pixel similarity check over many years. The experimental results proved the effectiveness of the proposed model in segmenting the forest images and predicting any loss (deforestation) or gain (reforestation), and the model achieved an accuracy of 94.8% and MIoU of 82.1%. Moreover, the deep semantic features are discriminative enough to efficiently identify and estimate the amount of deforestation change in terms of ac-curacy and computational resources.
引用
收藏
页数:14
相关论文
共 50 条
  • [11] Semantic Segmentation of Satellite Images Using Deep-Unet
    Ningthoujam Johny Singh
    Kishorjit Nongmeikapam
    Arabian Journal for Science and Engineering, 2023, 48 : 1193 - 1205
  • [12] Semantic Segmentation of Satellite Images Using Deep-Unet
    Singh, Ningthoujam Johny
    Nongmeikapam, Kishorjit
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2023, 48 (02) : 1193 - 1205
  • [13] INCORPORATING SPECTRAL UNMIXING IN SATELLITE IMAGERY SEMANTIC SEGMENTATION
    Baghbaderani, Razieh Kaviani
    Qi, Hairong
    2019 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2019, : 2449 - 2453
  • [14] Semantic Segmentation for Ships Detection from Satellite Imagery
    Hordiiuk, Dariia
    Oliinyk, Ievgenii
    Hnatushenko, Volodymyr
    Maksymov, Kostiantyn
    2019 IEEE 39TH INTERNATIONAL CONFERENCE ON ELECTRONICS AND NANOTECHNOLOGY (ELNANO), 2019, : 454 - 457
  • [15] FOREST MONITORING IN GUATEMALA USING SATELLITE IMAGERY AND DEEP LEARNING
    Wyniawskyj, Nina Sofia
    Napiorkowska, Milena
    Petit, David
    Podder, Pritimoy
    Marti, Paula
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 6598 - 6601
  • [16] Frontispiece: Semantic segmentation of satellite images using deep learning mechanisms
    不详
    PHOTOGRAMMETRIC RECORD, 2021, 36 (176): : 359 - 359
  • [17] Crop classification for UAV visible imagery using deep semantic segmentation methods
    Zhang, Shiqi
    Dai, Xiaoai
    Li, Jingzhong
    Gao, Xiaojie
    Zhang, Fuxi
    Gong, Fanxi
    Lu, Heng
    Wang, Meilian
    Ji, Fujiang
    Wang, Zekun
    Peng, Peihao
    GEOCARTO INTERNATIONAL, 2022, 37 (25) : 10033 - 10057
  • [18] Algorithms for semantic segmentation of multispectral remote sensing imagery using deep learning
    Kemker, Ronald
    Salvaggio, Carl
    Kanan, Christopher
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2018, 145 : 60 - 77
  • [19] Efficient Deep Semantic Segmentation for Land Cover Classification Using Sentinel Imagery
    Tzepkenlis, Anastasios
    Marthoglou, Konstantinos
    Grammalidis, Nikos
    REMOTE SENSING, 2023, 15 (08)
  • [20] SEMANTIC SEGMENTATION OF UNDERWATER SONAR IMAGERY WITH DEEP LEARNING
    Rahnemoonfar, Maryam
    Dobbs, Dugan
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 9455 - 9458