Solitons and vortices in two-dimensional discrete nonlinear Schrodinger systems with spatially modulated nonlinearity

被引:11
|
作者
Kevrekidis, P. G. [1 ,2 ,3 ]
Malomed, Boris A. [4 ]
Saxena, Avadh [2 ,3 ]
Bishop, A. R. [2 ,3 ]
机构
[1] Univ Massachusetts, Dept Math & Stat, Amherst, MA 01003 USA
[2] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA
[3] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA
[4] Tel Aviv Univ, Sch Elect Engn, Dept Phys Elect, Fac Engn, IL-69978 Tel Aviv, Israel
来源
PHYSICAL REVIEW E | 2015年 / 91卷 / 04期
基金
美国国家科学基金会;
关键词
INHOMOGENEOUS DEFOCUSING NONLINEARITY; VORTEX SOLITONS; LATTICES; BREATHERS; DYNAMICS; BRIGHT; PERSISTENCE; STABILITY;
D O I
10.1103/PhysRevE.91.043201
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We consider a two-dimensional (2D) generalization of a recently proposed model [Gligoric et al., Phys. Rev. E 88, 032905 (2013)], which gives rise to bright discrete solitons supported by the defocusing nonlinearity whose local strength grows from the center to the periphery. We explore the 2D model starting from the anticontinuum (AC) limit of vanishing coupling. In this limit, we can construct a wide variety of solutions including not only single-site excitations, but also dipole and quadrupole ones. Additionally, two separate families of solutions are explored: the usual "extended" unstaggered bright solitons, in which all sites are excited in the AC limit, with the same sign across the lattice (they represent the most robust states supported by the lattice, their 1D counterparts being those considered as 1D bright solitons in the above-mentioned work), and the vortex cross, which is specific to the 2D setting. For all the existing states, we explore their stability (also analytically, when possible). Typical scenarios of instability development are exhibited through direct simulations.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] TWO-DIMENSIONAL SOLITONS (MAGNETIC VORTICES) IN A UNIAXIAL ANTIFERROMAGNETIC
    VORONOV, VP
    KOSEVICH, AM
    ZHURNAL EKSPERIMENTALNOI I TEORETICHESKOI FIZIKI, 1986, 90 (06): : 2145 - 2151
  • [42] Solitons and vortices in nonlinear two-dimensional photonic crystals of the Kronig-Penney type
    Mayteevarunyoo, Thawatchai
    Malomed, Boris A.
    Roeksabutr, Athikom
    OPTICS EXPRESS, 2011, 19 (18): : 17834 - 17851
  • [43] Two-dimensional solitons in nonlinear lattices
    Kartashov, Yaroslav V.
    Malomed, Boris A.
    Vysloukh, Victor A.
    Torner, Lluis
    OPTICS LETTERS, 2009, 34 (06) : 770 - 772
  • [44] Symmetric and asymmetric solitons and vortices in linearly coupled two-dimensional waveguides with the cubic-quintic nonlinearity
    Dror, Nir
    Malomed, Boris A.
    PHYSICA D-NONLINEAR PHENOMENA, 2011, 240 (06) : 526 - 541
  • [45] Stable dipole solitons and soliton complexes in the nonlinear Schrodinger equation with periodically modulated nonlinearity
    Lebedev, M. E.
    Alfimov, G. L.
    Malomed, Boris A.
    CHAOS, 2016, 26 (07)
  • [46] VORTICES AND DARK SOLITONS IN THE 2-DIMENSIONAL NONLINEAR SCHRODINGER-EQUATION
    STALIUNAS, K
    CHAOS SOLITONS & FRACTALS, 1994, 4 (8-9) : 1783 - 1796
  • [47] Reflection and Splitting of Channel-Guided Solitons in Two-Dimensional Nonlinear Schrodinger Equation
    Sakaguchi, Hidetsugu
    Kageyama, Yusuke
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2010, 79 (11)
  • [48] Enhanced mobility of discrete solitons in anisotropic two-dimensional waveguide arrays with modulated separations
    Al Khawaja, U.
    Vinayagam, P. S.
    Al-Marzoug, S. M.
    PHYSICAL REVIEW A, 2018, 97 (02)
  • [49] Nonlinear Schrodinger equation for a two-dimensional plasma: Solitons, breathers, and plane wave stability
    Zabolotnykh, A. A.
    PHYSICAL REVIEW B, 2023, 108 (11)
  • [50] Resonant nonlinearity management for nonlinear Schrodinger solitons
    Sakaguchi, H
    Malomed, BA
    PHYSICAL REVIEW E, 2004, 70 (06):