Convergence of the Gauss-Newton method for a special class of systems of equations under a majorant condition

被引:6
|
作者
Goncalves, M. L. N. [1 ]
Oliveira, P. R. [2 ]
机构
[1] IME UFG, Goiania, Go, Brazil
[2] Univ Fed Rio de Janeiro, COPPE Sistemas, Rio De Janeiro, Brazil
关键词
Gauss-Newton method; majorant condition; semi-local convergence; non-linear systems of equations; CONSTANT RANK DERIVATIVES; LOCAL CONVERGENCE; BANACH-SPACE; PRINCIPLE;
D O I
10.1080/02331934.2013.778854
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we study the Gauss-Newton method for a special class of systems of non-linear equation. On the hypothesis that the derivative of the function under consideration satisfies a majorant condition, semi-local convergence analysis is presented. In this analysis, the conditions and proof of convergence are simplified by using a simple majorant condition to define regions where the Gauss-Newton sequence is 'well behaved'. Moreover, special cases of the general theory are presented as applications.
引用
收藏
页码:577 / 594
页数:18
相关论文
共 50 条
  • [31] Local convergence of Newton's method under a majorant condition in Riemannian manifolds
    Ferreira, Orizon P.
    Silva, Roberto C. M.
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2012, 32 (04) : 1696 - 1713
  • [32] Convergence and uniqueness properties of Gauss-Newton's method
    Li, C
    Zhang, WH
    Jin, XQ
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2004, 47 (6-7) : 1057 - 1067
  • [33] Convergence analysis of simplified Gauss-Newton iterative method under a heuristic rule
    Mahale, Pallavi
    Singh, Ankit
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2024, 134 (01):
  • [34] On the Gauss-Newton method
    Argyros I.K.
    Hilout S.
    Journal of Applied Mathematics and Computing, 2011, 35 (1-2) : 537 - 550
  • [35] Gauss-Newton method
    Wang, Yong
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2012, 4 (04) : 415 - 420
  • [36] Convergence analysis of inexact Gauss-Newton
    Gongcheng Shuxue Xuebao/Chinese Journal of Engineering Mathematics, 1997, 14 (04): : 1 - 7
  • [37] On the complexity of extending the convergence domain of Newton's method under the weak majorant condition
    Argyros, Ioannis K.
    George, Santhosh
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2024, 67 (03): : 781 - 795
  • [38] ON THE SEMILOCAL CONVERGENCE OF THE GAUSS-NEWTON METHOD USING RECURRENT FUNCTIONS
    Argyros, Ioannis K.
    Hilout, Said
    JOURNAL OF THE KOREAN SOCIETY OF MATHEMATICAL EDUCATION SERIES B-PURE AND APPLIED MATHEMATICS, 2010, 17 (04): : 307 - 319
  • [39] Extended convergence of Gauss-Newton's method and uniqueness of the solution
    Argyros, Ioannis K.
    Cho, Yeol Je
    George, Santhosh
    CARPATHIAN JOURNAL OF MATHEMATICS, 2018, 34 (02) : 135 - 142
  • [40] CONVERGENCE ANALYSIS OF THE GENERAL GAUSS-NEWTON ALGORITHM
    SCHABACK, R
    NUMERISCHE MATHEMATIK, 1985, 46 (02) : 281 - 309