Solution Analysis of the fractional-order Lu hyperchaotic system Based on Adomian Decomposition

被引:0
|
作者
Lei Tengfei [1 ]
Fu Haiyan [1 ]
Dai Wenpeng [1 ]
Zang Hong-yan [1 ]
机构
[1] Qilu Inst Technol, Collaborat Innovat Ctr Memrist Comp Applicat CICM, Jinan, Peoples R China
关键词
Adomian decomposition; fractional-order chaotic system; style; bifurcation diagram; Lyapunov exponent; CHAOTIC SYSTEMS; SYNCHRONIZATION;
D O I
10.1109/cac48633.2019.8996725
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, fractional-order Lu chaotic system is studied and simulated by Adomian decomposition method. The dynamic behavior of fractional-order chaotic system from Period to chaos is analyzed from bifurcation diagram and Lyapunov exponent spectrum numerical simulation under single parameter variation of the system. The simulation results show that the higher the fractional chaotic Order of system Q, the lower the system complexity. The simulation results provide theoretical support for the application of the system to chaotic secure communication.
引用
收藏
页码:3800 / 3803
页数:4
相关论文
共 50 条
  • [21] Dynamic analysis of a 5D fractional-order hyperchaotic system
    Shan Wang
    Ranchao Wu
    International Journal of Control, Automation and Systems, 2017, 15 : 1003 - 1010
  • [22] Dynamic analysis and implementation of a digital signal processor of a fractional-order Lorenz-Stenflo system based on the Adomian decomposition method
    Wang, H. H.
    Sun, K. H.
    He, S. B.
    PHYSICA SCRIPTA, 2015, 90 (01)
  • [23] Dynamic Analysis of a 5D Fractional-order Hyperchaotic System
    Wang, Shan
    Wu, Ranchao
    INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2017, 15 (03) : 1003 - 1010
  • [24] Hopf bifurcation analysis of a new commensurate fractional-order hyperchaotic system
    Li, Xiang
    Wu, Ranchao
    NONLINEAR DYNAMICS, 2014, 78 (01) : 279 - 288
  • [25] Hopf bifurcation analysis of a new commensurate fractional-order hyperchaotic system
    Xiang Li
    Ranchao Wu
    Nonlinear Dynamics, 2014, 78 : 279 - 288
  • [26] Dynamics and circuit simulation of a fractional-order hyperchaotic system
    Lassoued, A.
    Nazarimehr, F.
    Boubaker, O.
    SCIENTIA IRANICA, 2023, 30 (02) : 507 - 517
  • [27] A novel fractional-order hyperchaotic system and its synchronization
    周平
    危丽佳
    程雪峰
    Chinese Physics B, 2009, 18 (07) : 2674 - 2679
  • [28] Circuit Implementation of a New Fractional-Order Hyperchaotic System
    Wu, Xuyang
    Jia, Hongyan
    Bai, Ning
    Jia, Weibo
    ICAROB 2017: PROCEEDINGS OF THE 2017 INTERNATIONAL CONFERENCE ON ARTIFICIAL LIFE AND ROBOTICS, 2017, : P213 - P216
  • [29] A NOVEL FRACTIONAL-ORDER HYPERCHAOTIC SYSTEM AND ITS SYNCHRONIZATION
    Zhou, Ping
    Zhu, Wei
    ADVANCES IN DIFFERENTIAL EQUATIONS AND CONTROL PROCESSES, 2009, 3 (01): : 53 - 61
  • [30] A novel fractional-order hyperchaotic system and its synchronization
    Zhou Ping
    Wei Li-Jia
    Cheng Xue-Feng
    CHINESE PHYSICS B, 2009, 18 (07) : 2674 - 2679