VECTORIAL BOOLEAN FUNCTIONS WITH GOOD CRYPTOGRAPHIC PROPERTIES

被引:8
|
作者
Feng, Keqin [1 ]
Yang, Jing [1 ,2 ]
机构
[1] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
[2] Nanyang Technol Univ, Sch Phys & Math Sci, Div Math Sci, Singapore 637371, Singapore
关键词
Boolean function; bent function; nonlinearity; algebraic immunity; stream and block cipher; ALGEBRAIC IMMUNITY; GOOD NONLINEARITY; INFINITE CLASS;
D O I
10.1142/S0129054111008702
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper we generalize two remarkable results on cryptographic properties of Boolean functions given by Tu and Deng [8] to the vectorial case. Firstly we construct vectorial bent Boolean functions F:F(2)(n) -> F(2)(m) with good algebraic immunity for all cases 1 <= m <= n, and with maximum algebraic immunity for some cases (n, m). Then by modifying F, we get vectorial balanced functions F':F(2)(n) -> F(2)(m) with optimum algebraic degree, good nonlinearity and good algebraic immunity for all cases 1 <= m <= n/2, and with maximum algebraic immunity for some cases (n, m). Moreover, while Tu-Deng's results are valid under a combinatorial hypothesis, our results (Theorems 4 and 5) are true without this hypothesis.
引用
收藏
页码:1271 / 1282
页数:12
相关论文
共 50 条
  • [31] Autocorrelations of Vectorial Boolean Functions
    Canteaut, Anne
    Koelsch, Lukas
    Li, Chao
    Li, Chunlei
    Li, Kangquan
    Qu, Longjiang
    Wiemer, Friedrich
    PROGRESS IN CRYPTOLOGY - LATINCRYPT 2021, 2021, 12912 : 233 - 253
  • [32] On cryptographic complexity of Boolean functions
    Carlet, C
    FINITE FIELDS WITH APPLICATIONS TO CODING THEORY, CRYPTOGRAPHY AND RELATED AREAS, 2002, : 53 - 69
  • [33] On the annihilators of cryptographic Boolean functions
    State Key Lab. of Information Security, Institute of Software, Chinese Academy of Sciences, Beijing 100080, China
    不详
    不详
    Tien Tzu Hsueh Pao, 2006, 1 (51-54):
  • [34] Cryptographic Boolean Functions and Applications
    Joyner, David
    CRYPTOLOGIA, 2013, 37 (02) : 189 - 192
  • [35] Cryptographic Boolean Functions with R
    Lafitte, Frederic
    Van Heule, Dirk
    Van Hamme, Julien
    R JOURNAL, 2011, 3 (01): : 44 - 47
  • [36] Differential and Linear properties of vectorial boolean functions based on chi
    Mella, Silvia
    Mehrdad, Alireza
    Daemen, Joan
    CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2023, 15 (06): : 1087 - 1116
  • [37] Cryptographic properties of Boolean functions defining elementary cellular automata
    Escuadra Burrieza, J.
    Martin del Rey, A.
    Perez Iglesias, J. L.
    Rodriguez Sanchez, G.
    Queiruga Dios, A.
    de la Villa Cuenca, A.
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2011, 88 (02) : 239 - 248
  • [39] Cryptographic properties and structure of Boolean functions with full algebraic immunity
    Carlet, Claude
    Dalai, Deepak Kumar
    Maitra, Subhamoy
    2006 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, VOLS 1-6, PROCEEDINGS, 2006, : 734 - +
  • [40] Cryptographic properties of several classes of rotation symmetric Boolean functions
    Sun G.-H.
    Wu C.-K.
    Ruan Jian Xue Bao/Journal of Software, 2010, 21 (12): : 3165 - 3174