Genome-wide identification of CCT genes in wheat (Triticum aestivum L.) and their expression analysis during vernalization

被引:4
|
作者
Zhang, HongWei [1 ,2 ]
Jiao, Bo [2 ]
Dong, FuShuang [2 ]
Liang, XinXia [2 ]
Zhou, Shuo [2 ]
Wang, Haibo [1 ,2 ]
机构
[1] Hebei Agr Univ, Coll Agron, Baoding, Hebei, Peoples R China
[2] Hebei Acad Agr & Forestry Sci, Inst Biotechnol & Food Sci, Plant Genet Engn Ctr Hebei Prov, Shijiazhuang, Hebei, Peoples R China
来源
PLOS ONE | 2022年 / 17卷 / 01期
关键词
PSEUDO-RESPONSE-REGULATOR; FLOWERING-LOCUS-T; CIRCADIAN CLOCK; TRANSCRIPTION FACTORS; ARABIDOPSIS-THALIANA; HEADING DATE; GATA FAMILY; CONSTANS; TIME; EVOLUTION;
D O I
10.1371/journal.pone.0262147
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Numerous CCT genes are known to regulate various biological processes, such as circadian rhythm regulation, flowering, light signaling, plant development, and stress resistance. The CCT gene family has been characterized in many plants but remains unknown in the major cereal wheat (Triticum aestivum L.). Extended exposure to low temperature (vernalization) is necessary for winter wheat to flower successfully. VERNALIZATION2 (VRN2), a specific CCT-containing gene, has been proved to be strongly associated with vernalization in winter wheat. Mutation of all VRN2 copies in three subgenomes results in the eliminated demands of low temperature in flowering. However, no other CCT genes have been reported to be associated with vernalization to date. The present study screened CCT genes in the whole wheat genome, and preliminarily identified the vernalization related CCT genes through expression analysis. 127 CCT genes were identified in three subgenomes of common wheat through a hidden Markov model-based method. Based on multiple alignment, these genes were grouped into 40 gene clusters, including the duplicated gene clusters TaCMF6 and TaCMF8, each tandemly arranged near the telomere. The phylogenetic analysis classified these genes into eight groups. The transcriptome analysis using leaf tissues collected before, during, and after vernalization revealed 49 upregulated and 31 downregulated CCT genes during vernalization, further validated by quantitative real-time PCR. Among the differentially expressed and well-investigated CCT gene clusters analyzed in this study, TaCMF11, TaCO18, TaPRR95, TaCMF6, and TaCO16 were induced during vernalization but decreased immediately after vernalization, while TaCO1, TaCO15, TaCO2, TaCMF8, and TaPPD1 were stably suppressed during and after vernalization. These data imply that some vernalization related CCT genes other than VRN2 may exist in wheat. This study improves our understanding of CCT genes and provides a foundation for further research on CCT genes related to vernalization in wheat.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] Genome-Wide Identification and Expression Analysis of TUA and TUB Genes in Wheat (Triticum aestivum L.) during Its Development
    Ren, Yang
    Song, Qilu
    Shan, Sicong
    Wang, Junwei
    Ma, Shoucai
    Song, Yulong
    Ma, Lingjian
    Zhang, Gaisheng
    Niu, Na
    [J]. PLANTS-BASEL, 2022, 11 (24):
  • [2] Genome-wide identification and expression analysis of new cytokinin metabolic genes in bread wheat (Triticum aestivum L.)
    Shoaib, Muhammad
    Yang, Wenlong
    Shan, Qiangqiang
    Sajjad, Muhammad
    Zhang, Aimin
    [J]. PEERJ, 2019, 7
  • [3] Genome-wide identification and expression analysis of calmodulin and calmodulin-like genes in wheat (Triticum aestivum L.)
    Liu, Yongwei
    Chen, Wenye
    Liu, Linbin
    Su, Yuhuan
    Li, Yuan
    Jia, Weizhe
    Jiao, Bo
    Wang, Jiao
    Yang, Fan
    Dong, Fushuang
    Chai, Jianfang
    Zhao, He
    Lv, Mengyu
    Li, Yanyi
    Zhou, Shuo
    [J]. PLANT SIGNALING & BEHAVIOR, 2022, 17 (01)
  • [4] Genome-wide identification and expression analysis of the TaRRA gene family in wheat (Triticum aestivum L.)
    Sun, Lijing
    Lv, Liangjie
    Zhao, Jie
    Hu, Mengyun
    Zhang, Yelun
    Zhao, Yun
    Tang, Xiaodong
    Wang, Peinan
    Li, Qianying
    Chen, Xiyong
    Li, Hui
    Zhang, Yingjun
    [J]. FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [5] Genome-wide identification and expression analysis of the GSK gene family in wheat (Triticum aestivum L.)
    Peipei Zhang
    Linghui Zhang
    Tao Chen
    Fanli Jing
    Yuan Liu
    Jingfu Ma
    Tian Tian
    Delong Yang
    [J]. Molecular Biology Reports, 2022, 49 : 2899 - 2913
  • [6] Genome-wide identification and expression analysis of the GSK gene family in wheat (Triticum aestivum L.)
    Zhang, Peipei
    Zhang, Linghui
    Chen, Tao
    Jing, Fanli
    Liu, Yuan
    Ma, Jingfu
    Tian, Tian
    Yang, Delong
    [J]. MOLECULAR BIOLOGY REPORTS, 2022, 49 (04) : 2899 - 2913
  • [7] Genome-wide identification and expression analysis of the UBC gene family in wheat (Triticum aestivum L.)
    Gao, Weidong
    Zhang, Long
    Zhang, Yanyan
    Zhang, Peipei
    Shahinnia, Fahimeh
    Chen, Tao
    Yang, Delong
    [J]. BMC PLANT BIOLOGY, 2024, 24 (01)
  • [8] Genome-Wide Identification and Homoeologous Expression Analysis of PP2C Genes in Wheat (Triticum aestivum L.)
    Yu, Xiaofen
    Han, Jiapeng
    Wang, Efan
    Xiao, Jie
    Hu, Rui
    Yang, Guangxiao
    He, Guangyuan
    [J]. FRONTIERS IN GENETICS, 2019, 10
  • [9] Genome-wide identification and expression analysis of expansin gene family in common wheat (Triticum aestivum L.)
    Zhisheng Han
    Yanlin Liu
    Xiong Deng
    Dongmiao Liu
    Yue Liu
    Yingkao Hu
    Yueming Yan
    [J]. BMC Genomics, 20
  • [10] Genome-Wide Identification and Expression Analysis of the Histone Deacetylase Gene Family in Wheat (Triticum aestivum L.)
    Jin, Peng
    Gao, Shiqi
    He, Long
    Xu, Miaoze
    Zhang, Tianye
    Zhang, Fan
    Jiang, Yaoyao
    Liu, Tingting
    Yang, Jin
    Yang, Jian
    Dai, Liangying
    Chen, Jianping
    [J]. PLANTS-BASEL, 2021, 10 (01): : 1 - 19