Genome-Wide Identification and Expression Analysis of the Histone Deacetylase Gene Family in Wheat (Triticum aestivum L.)

被引:12
|
作者
Jin, Peng [1 ,2 ]
Gao, Shiqi [2 ]
He, Long [2 ]
Xu, Miaoze [2 ]
Zhang, Tianye [2 ]
Zhang, Fan [2 ]
Jiang, Yaoyao [2 ]
Liu, Tingting [2 ]
Yang, Jin [2 ]
Yang, Jian [2 ]
Dai, Liangying [1 ]
Chen, Jianping [1 ,2 ]
机构
[1] Hunan Agr Univ, Coll Plant Protect, Changsha 410128, Peoples R China
[2] Ningbo Univ, Inst Plant Virol, State Key Lab Qual & Safety Agroprod, Ningbo 315211, Peoples R China
来源
PLANTS-BASEL | 2021年 / 10卷 / 01期
基金
中国国家自然科学基金;
关键词
wheat; histone deacetylase (HDAC); genome-wide; expression pattern; virus-induced gene silencing (VIGS);
D O I
10.3390/plants10010019
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Histone acetylation is a dynamic modification process co-regulated by histone acetyltransferases (HATs) and histone deacetylases (HDACs). Although HDACs play vital roles in abiotic or biotic stress responses, their members in Triticum aestivum and their response to plant viruses remain unknown. Here, we identified and characterized 49 T. aestivum HDACs (TaHDACs) at the whole-genome level. Based on phylogenetic analyses, TaHDACs could be divided into 5 clades, and their protein spatial structure was integral and conserved. Chromosomal location and synteny analyses showed that TaHDACs were widely distributed on wheat chromosomes, and gene duplication has accelerated the TaHDAC gene family evolution. The cis-acting element analysis indicated that TaHDACs were involved in hormone response, light response, abiotic stress, growth, and development. Heatmaps analysis of RNA-sequencing data showed that TaHDAC genes were involved in biotic or abiotic stress response. Selected TaHDACs were differentially expressed in diverse tissues or under varying temperature conditions. All selected TaHDACs were significantly upregulated following infection with the barley stripe mosaic virus (BSMV), Chinese wheat mosaic virus (CWMV), and wheat yellow mosaic virus (WYMV), suggesting their involvement in response to viral infections. Furthermore, TaSRT1-silenced contributed to increasing wheat resistance against CWMV infection. In summary, these findings could help deepen the understanding of the structure and characteristics of the HDAC gene family in wheat and lay the foundation for exploring the function of TaHDACs in plants resistant to viral infections.
引用
收藏
页码:1 / 19
页数:19
相关论文
共 50 条
  • [1] Genome-wide identification and expression analysis of the TaRRA gene family in wheat (Triticum aestivum L.)
    Sun, Lijing
    Lv, Liangjie
    Zhao, Jie
    Hu, Mengyun
    Zhang, Yelun
    Zhao, Yun
    Tang, Xiaodong
    Wang, Peinan
    Li, Qianying
    Chen, Xiyong
    Li, Hui
    Zhang, Yingjun
    [J]. FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [2] Genome-wide identification and expression analysis of the GSK gene family in wheat (Triticum aestivum L.)
    Peipei Zhang
    Linghui Zhang
    Tao Chen
    Fanli Jing
    Yuan Liu
    Jingfu Ma
    Tian Tian
    Delong Yang
    [J]. Molecular Biology Reports, 2022, 49 : 2899 - 2913
  • [3] Genome-wide identification and expression analysis of the GSK gene family in wheat (Triticum aestivum L.)
    Zhang, Peipei
    Zhang, Linghui
    Chen, Tao
    Jing, Fanli
    Liu, Yuan
    Ma, Jingfu
    Tian, Tian
    Yang, Delong
    [J]. MOLECULAR BIOLOGY REPORTS, 2022, 49 (04) : 2899 - 2913
  • [4] Genome-wide identification and expression analysis of the UBC gene family in wheat (Triticum aestivum L.)
    Gao, Weidong
    Zhang, Long
    Zhang, Yanyan
    Zhang, Peipei
    Shahinnia, Fahimeh
    Chen, Tao
    Yang, Delong
    [J]. BMC PLANT BIOLOGY, 2024, 24 (01)
  • [5] Genome-wide identification and analysis of the COI gene family in wheat (Triticum aestivum L.)
    Jian-fang Bai
    Yu-kun Wang
    Peng Wang
    Shao-hua Yuan
    Jian-gang Gao
    Wen-jing Duan
    Na Wang
    Feng-ting Zhang
    Wen-jie Zhang
    Meng-ying Qin
    Chang-ping Zhao
    Li-ping Zhang
    [J]. BMC Genomics, 19
  • [6] Genome-wide identification and analysis of the COI gene family in wheat (Triticum aestivum L.)
    Bai, Jian-fang
    Wang, Yu-kun
    Wang, Peng
    Yuan, Shao-hua
    Gao, Jian-gang
    Duan, Wen-jing
    Wang, Na
    Zhang, Feng-ting
    Zhang, Wen-jie
    Qin, Meng-ying
    Zhao, Chang-ping
    Zhang, Li-ping
    [J]. BMC GENOMICS, 2018, 19
  • [7] Genome-wide identification and expression analysis of expansin gene family in common wheat (Triticum aestivum L.)
    Zhisheng Han
    Yanlin Liu
    Xiong Deng
    Dongmiao Liu
    Yue Liu
    Yingkao Hu
    Yueming Yan
    [J]. BMC Genomics, 20
  • [8] Genome-wide identification and expression analysis of expansin gene family in common wheat (Triticum aestivum L.)
    Han, Zhisheng
    Liu, Yanlin
    Deng, Xiong
    Liu, Dongmiao
    Liu, Yue
    Hu, Yingkao
    Yan, Yueming
    [J]. BMC GENOMICS, 2019, 20 (1)
  • [9] Genome-Wide Identification and Expression Profile Analysis of the Phospholipase C Gene Family in Wheat (Triticum aestivum L.)
    Wang, Xianguo
    Liu, Yang
    Li, Zheng
    Gao, Xiang
    Dong, Jian
    Zhang, Jiacheng
    Zhang, Longlong
    Thomashow, Linda S.
    Weller, David M.
    Yang, Mingming
    [J]. PLANTS-BASEL, 2020, 9 (07): : 1 - 20
  • [10] Genome-Wide Identification and Expression Analysis of the HD-Zip Gene Family in Wheat (Triticum aestivum L.)
    Yue, Hong
    Shu, Duntao
    Wang, Meng
    Xing, Guangwei
    Zhan, Haoshuang
    Du, Xianghong
    Song, Weining
    Nie, Xiaojun
    [J]. GENES, 2018, 9 (02)