Evolutionary Resampling for Multi-Target Tracking using Probability Hypothesis Density Filter

被引:0
|
作者
Halimeh, Mhd Modar [1 ]
Brendel, Andreas [1 ]
Kellermann, Walter [1 ]
机构
[1] Friedrich Alexander Univ Erlangen Nurnberg, Multimedia Commun & Signal Proc, Cauerstr 7, D-91058 Erlangen, Germany
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A resampling scheme is proposed for use with Sequential Monte Carlo (SMC)-based Probability Hypothesis Density (PHD) filters. It consists of two steps, first, regions of interest are identified, then an evolutionary resampling is applied for each region. Applying resampling locally corresponds to treating each target individually, while the evolutionary resampling introduces a memory to a group of particles, increasing the robustness of the estimation against noise outliers. The proposed approach is compared to the original SMC-PHD filter for tracking multiple targets in a deterministically moving targets scenario, and a noisy motion scenario. In both cases, the proposed approach provides more accurate estimates.
引用
收藏
页码:642 / 646
页数:5
相关论文
共 50 条
  • [41] Multiple-model probability hypothesis density filter for multi-target tracking without the statistics of noise parameters
    Wu, Xin-Hui
    Huang, Gao-Ming
    Gao, Jun
    [J]. Kongzhi yu Juece/Control and Decision, 2014, 29 (03): : 475 - 480
  • [42] MIMO Radar Target Tracking using the Probability Hypothesis Density Filter
    Glass, John D.
    Lanterman, Aaron D.
    [J]. 2012 IEEE AEROSPACE CONFERENCE, 2012,
  • [43] Multi-target particle filtering for the probability hypothesis density
    Sidenbladh, H
    [J]. FUSION 2003: PROCEEDINGS OF THE SIXTH INTERNATIONAL CONFERENCE OF INFORMATION FUSION, VOLS 1 AND 2, 2003, : 800 - 806
  • [44] Multi-target state-estimation technique for the particle probability hypothesis density filter
    LIN LiangKui 1
    2 95507 Unit
    [J]. Science China(Information Sciences), 2012, 55 (10) : 2318 - 2328
  • [45] Multi-target state-estimation technique for the particle probability hypothesis density filter
    LiangKui Lin
    Hui Xu
    WeiDong Sheng
    Wei An
    [J]. Science China Information Sciences, 2012, 55 : 2318 - 2328
  • [46] Multi-target state-estimation technique for the particle probability hypothesis density filter
    Lin LiangKui
    Xu Hui
    Sheng WeiDong
    An Wei
    [J]. SCIENCE CHINA-INFORMATION SCIENCES, 2012, 55 (10) : 2318 - 2328
  • [47] A novel variable-lag probability hypothesis density smoother for multi-target tracking
    Li Yue
    Zhang Jianqiu
    Yin Jianjun
    [J]. Chinese Journal of Aeronautics, 2013, (04) : 1029 - 1037
  • [48] A novel variable-lag probability hypothesis density smoother for multi-target tracking
    Li Yue
    Zhang Jianqiu
    Yin Jianjun
    [J]. CHINESE JOURNAL OF AERONAUTICS, 2013, 26 (04) : 1029 - 1037
  • [49] A novel variable-lag probability hypothesis density smoother for multi-target tracking
    Li Yue
    Zhang Jianqiu
    Yin Jianjun
    [J]. Chinese Journal of Aeronautics, 2013, 26 (04) : 1029 - 1037
  • [50] Particle probability-hypothesis-density filter with kernel based state extraction for efficient multi-target visual tracking
    Wu, Jing-Jing
    You, Li-Hua
    Cao, Yi
    [J]. Information Technology Journal, 2013, 12 (17) : 4176 - 4179