An analogue of a theorem of Titchmarsh for Walsh-Fourier transformations

被引:0
|
作者
Golubov, BI
机构
关键词
D O I
10.1070/SM1998v189n05ABEH000322
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (f) over cap(c) be the Fourier cosine transform of f. Then, as proved for functions of class L-2(R+) in Titchmarsh's book 'Introduction to the theory of Fourier integrals' (1937), H(f)(x) = integral(x)(+infinity) f(y)/ydy, x > 0, for the Hardy-Littlewood operator B(f)(x) = 1/x integral(0)(x) f(y) dy, x > 0. In the present paper similar equalities are proved for functions of class L-p(R+), 1 < p less than or equal to 2, and the Walsh-Fourier transformation.
引用
收藏
页码:707 / 725
页数:19
相关论文
共 50 条