Adipose-derived Human Perivascular Stem Cells May Improve Achilles Tendon Healing in Rats

被引:17
|
作者
Devana, Sai K. [1 ]
Kelley, Benjamin V. [1 ]
McBride, Owen J. [1 ]
Kabir, Nima [1 ]
Jensen, Andrew R. [1 ]
Park, Se Jin [1 ]
Eliasberg, Claire D. [1 ,2 ]
Dar, Ayelet [1 ]
Mosich, Gina M. [1 ]
Kowalski, Tomasz J. [1 ,3 ]
Peault, Bruno [1 ,4 ]
Petrigliano, Frank A. [1 ]
SooHoo, Nelson F. [1 ]
机构
[1] Univ Calif Los Angeles, David Geffen Sch Med, Dept Orthopaed Surg, Los Angeles, CA 90095 USA
[2] Hosp Special Surg, Dept Orthopaed Surg, 535 E 70th St, New York, NY 10021 USA
[3] Queen Elizabeth Hosp Birmingham, Dept Orthopaed Surg, Birmingham, W Midlands, England
[4] Univ Edinburgh, MRC Ctr Regenerat Med, Edinburgh, Midlothian, Scotland
基金
英国医学研究理事会;
关键词
BONE-MARROW; TISSUE; PERICYTES; RUPTURE; TRANSPLANTATION; ORIGIN;
D O I
10.1097/CORR.0000000000000461
中图分类号
R826.8 [整形外科学]; R782.2 [口腔颌面部整形外科学]; R726.2 [小儿整形外科学]; R62 [整形外科学(修复外科学)];
学科分类号
摘要
Background Achilles tendon rupture is a common injury and the best treatment option remains uncertain between surgical and nonoperative methods. Biologic approaches using multipotent stem cells such as perivascular stem cells pose a possible treatment option, although there is currently a paucity of evidence regarding their clinical therapeutic use. Questions/purposes The purpose of this study was to determine whether injected perivascular stem cells (PSCs) would (1) improve histologic signs of tendon healing (such as percent area of collagen); and (2) improve biomechanical properties (peak load or stiffness) in a rat model of Achilles tendon transection. Methods Two subtypes of PSCs were derived from human adipose tissue: pericytes (CD146(+) CD34(-)CD45(-)CD31(-)) and adventitial cells (CD146(-)CD34(+)CD45(-)CD31(-)). Thirty-two athymic rats underwent right Achilles transection and were randomized to receive injection with saline (eight tendons), hydrogel (four tendons), pericytes in hydrogel (four tendons), or adventitial cells in hydrogel (eight tendons) 3 days postoperatively with the left serving as an uninjured control. Additionally, a subset of pericytes was labeled with CM-diI to track cell viability and localization. At 3 weeks, the rats were euthanized, and investigators blinded to treatment group allocation evaluated tendon healing by peak load and stiffness using biomechanical testing and percent area of collagen using histologic analysis with picrosirius red staining. Results Histologic analysis showed a higher mean percent area collagen for pericytes (30%) and adventitial cells (28%) than hydrogel (21%) or saline (26%). However, a nonparametric statistical analysis yielded no statistical difference. Mechanical testing demonstrated that the pericyte group had a higher peak load than the saline group (41 +/- 7 N versus 26 +/- 9 N; mean difference 15 N; 95% confidence interval [CI], 4-27 N; p = 0.003) and a higher peak load than the hydrogel group (41 +/- 7 N versus 25 +/- 3 N; mean difference 16; 95% CI, 8-24 N; p = 0.001). The pericyte group demonstrated higher stiffness than the hydrogel group (36 +/- 12 N/mm versus 17 +/- 6 N/mm; mean difference 19 N/mm; 95% CI, 5-34 N/mm; p = 0.005). Conclusions Our results suggest that injection of PSCs improves mechanical but not the histologic properties of early Achilles tendon healing.
引用
收藏
页码:2091 / 2100
页数:10
相关论文
共 50 条
  • [41] IN VITRO MICRODISTRACTION OF HUMAN ADIPOSE-DERIVED STEM CELLS MAY PROMOTE THEIR OSTEOGENIC POTENTIAL
    Lee, J. C.
    Fan, K.
    Sorice, S.
    Bradley, J.
    Zuk, P.
    JOURNAL OF INVESTIGATIVE MEDICINE, 2011, 59 (01) : 206 - 206
  • [42] Optimization of an Injectable Tendon Hydrogel: The Effects of Platelet-Rich Plasma and Adipose-Derived Stem Cells on Tendon Healing In Vivo
    Chiou, Grace Jane
    Crowe, Christopher
    McGoldrick, Rory
    Hui, Kenneth
    Pham, Hung
    Chang, James
    TISSUE ENGINEERING PART A, 2015, 21 (9-10) : 1579 - 1586
  • [43] Therapeutic Mechanisms of Human Adipose-Derived Mesenchymal Stem Cells in a Rat Tendon Injury Model
    Lee, Sang Yoon
    Kwon, Bomi
    Lee, Kyoungbun
    Son, Young Hoon
    Chung, Sun G.
    AMERICAN JOURNAL OF SPORTS MEDICINE, 2017, 45 (06): : 1429 - 1439
  • [44] Tendon Tissue Engineering: Mechanism and Effects of Human Tenocyte Coculture With Adipose-Derived Stem Cells
    Long, Chao
    Wang, Zhen
    Legrand, Anais
    Chattopadhyay, Arhana
    Chang, James
    Fox, Paige M.
    JOURNAL OF HAND SURGERY-AMERICAN VOLUME, 2018, 43 (02): : 183.e1 - 183.e9
  • [45] Myogenic Differentiation of Human Adipose-Derived Stem Cells
    Park, Yoon Ghil
    Baek, Ah Mi
    Do, Byung Rok
    Choi, Jung Hwa
    Kim, Sun Do
    ANNALS OF REHABILITATION MEDICINE-ARM, 2011, 35 (01): : 8 - 13
  • [46] Xenotransplant of human adipose-derived mesenchymal stem cells
    Meyerrose, T
    DeUgarte, DA
    McNamara, G
    Hedrick, MH
    Nolta, JA
    EXPERIMENTAL HEMATOLOGY, 2002, 30 (06) : 142 - 142
  • [47] Human adipose-derived stem cells stimulate neuroregeneration
    Ruslan F. Masgutov
    Galina A. Masgutova
    Margarita N. Zhuravleva
    Ilnur I. Salafutdinov
    Regina T. Mukhametshina
    Yana O. Mukhamedshina
    Luciana M. Lima
    Helton J. Reis
    Andrey P. Kiyasov
    András Palotás
    Albert A. Rizvanov
    Clinical and Experimental Medicine, 2016, 16 : 451 - 461
  • [48] The Effect of Age on Human Adipose-Derived Stem Cells
    Wu, Wei
    Niklason, Laura
    Steinbacher, Derek M.
    PLASTIC AND RECONSTRUCTIVE SURGERY, 2013, 131 (01) : 27 - 37
  • [49] Human adipose-derived stem cells stimulate neuroregeneration
    Masgutov, Ruslan F.
    Masgutova, Galina A.
    Zhuravleva, Margarita N.
    Salafutdinov, Ilnur I.
    Mukhametshina, Regina T.
    Mukhamedshina, Yana O.
    Lima, Luciana M.
    Reis, Helton J.
    Kiyasov, Andrey P.
    Palotas, Andras
    Rizvanov, Albert A.
    CLINICAL AND EXPERIMENTAL MEDICINE, 2016, 16 (03) : 451 - 461
  • [50] Human Adipose-Derived Stem Cells for a Vascular Graft
    Arrizabalaga, Julien H.
    Nollert, Matthias U.
    CIRCULATION, 2013, 128 (22)