Locating unstable periodic orbits: When adaptation integrates into delayed feedback control

被引:16
|
作者
Lin, Wei [1 ,2 ]
Ma, Huanfei [1 ,2 ,3 ]
Feng, Jianfeng [1 ,2 ,4 ]
Chen, Guanrong [5 ]
机构
[1] Fudan Univ, Sch Math Sci, Ctr Computat Syst Biol, Shanghai 200433, Peoples R China
[2] Fudan Univ, Shanghai Key Lab Contemporary Appl Math, Shanghai 200433, Peoples R China
[3] Soochow Univ, Sch Math Sci, Suzhou 215006, Peoples R China
[4] Univ Warwick, Dept Comp Sci, Coventry CV4 7AL, W Midlands, England
[5] City Univ Hong Kong, Dept Elect Engn, Hong Kong, Hong Kong, Peoples R China
来源
PHYSICAL REVIEW E | 2010年 / 82卷 / 04期
基金
英国工程与自然科学研究理事会;
关键词
CHAOS CONTROL; SYNCHRONIZATION;
D O I
10.1103/PhysRevE.82.046214
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Finding unstable periodic orbits (UPOs) is always a challenging demand in biophysics and computational biology, which needs efficient algorithms. To meet this need, an approach to locating unstable periodic orbits in chaotic dynamical system is presented. The uniqueness of the approach lies in the introduction of adaptive rules for both feedback gain and time delay in the system without requiring any information of the targeted UPO periods a priori. This approach is theoretically validated under some mild conditions and successfully tested with some practical strategies in several typical chaotic systems with or without significant time delays.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Tracking unstable steady states and periodic orbits of oscillatory and chaotic electrochemical systems using delayed feedback control
    Kiss, Istvan Z.
    Kazsu, Zoltan
    Gaspar, Vilmos
    [J]. CHAOS, 2006, 16 (03)
  • [22] METHODS FOR LOCATING PERIODIC-ORBITS IN HIGHLY UNSTABLE SYSTEMS
    FARANTOS, SC
    [J]. JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM, 1995, 341 : 91 - 100
  • [23] Locating and Stabilizing Unstable Periodic Orbits Embedded in the Horseshoe Map
    Miino, Yuu
    Ito, Daisuke
    Ueta, Tetsushi
    Kawakami, Hiroshi
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2021, 31 (04):
  • [24] On optimal stabilization of periodic orbits via time delayed feedback control
    Basso, M
    Genesio, R
    Giovanardi, L
    Tesi, A
    Torrini, G
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1998, 8 (08): : 1699 - 1706
  • [25] Stabilization of unstable periodic solutions by nonlinear recursive delayed feedback control
    Zhu, Jiandong
    Tian, Yu-Ping
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2006, 16 (10): : 2935 - 2947
  • [26] An optimization approach to locating and stabilizing unstable periodic orbits of chaotic systems
    Tian, YP
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2002, 12 (05): : 1163 - 1172
  • [27] Pulsating feedback control for stabilizing unstable periodic orbits in a nonlinear oscillator with a nonsymmetric potential
    Litak, G.
    Ali, M.
    Saha, L. M.
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2007, 17 (08): : 2797 - 2803
  • [28] STABILIZING THE UNSTABLE PERIODIC ORBITS OF A CHAOTIC SYSTEM USING ADAPTIVE TIME-DELAYED STATE FEEDBACK
    Fourati, Aida
    Feki, Moez
    [J]. 2009 6TH INTERNATIONAL MULTI-CONFERENCE ON SYSTEMS, SIGNALS AND DEVICES, VOLS 1 AND 2, 2009, : 101 - 106
  • [29] STABILIZATION OF UNSTABLE STEADY STATES AND UNSTABLE PERIODIC ORBITS BY FEEDBACK WITH VARIABLE DELAY
    Gjurchinovski, A.
    Urumov, V.
    [J]. ROMANIAN JOURNAL OF PHYSICS, 2013, 58 (1-2): : 36 - 49