PREDICTING OUTCOMES IN MULTIPLE SCLEROSIS THROUGH MACHINE LEARNING USING DATA FROM PHARMACEUTICAL CONSULTATION

被引:0
|
作者
Cardoso, P. [1 ]
Santos, C. [1 ]
Costa, F. [1 ]
机构
[1] Luz Saude, Lisbon, Portugal
关键词
D O I
暂无
中图分类号
F [经济];
学科分类号
02 ;
摘要
POSA314
引用
收藏
页码:S200 / S200
页数:1
相关论文
共 50 条
  • [31] Predicting clinical conversion to multiple sclerosis in patients with clinically isolated syndrome using machine learning techniques
    Ciccarelli, O.
    Kwok, P. P.
    Wottschel, V.
    Chard, D.
    Stromillo, M. L.
    De Stefano, N.
    Thompson, A. J.
    Miller, D. H.
    Alexander, D. H.
    MULTIPLE SCLEROSIS JOURNAL, 2012, 18 : 30 - 31
  • [32] Predicting party switching through machine learning and open data
    Meneghetti, Nicolo
    Pacini, Fabio
    Dal Monte, Francesca Biondi
    Cracchiolo, Marina
    Rossi, Emanuele
    Mazzoni, Alberto
    Micera, Silvestro
    ISCIENCE, 2023, 26 (07)
  • [33] Predicting learning outcomes using multilevel analysis of behavioral data from learning experiments
    Hartig, Johannes
    Meyer, Katja
    INTERNATIONAL JOURNAL OF PSYCHOLOGY, 2008, 43 (3-4) : 633 - 633
  • [34] Predicting Traffic Phases from Car Sensor Data using Machine Learning
    Heyns, E.
    Uniyal, S.
    Dugundji, E.
    Tillema, F.
    Huijboom, C.
    10TH INTERNATIONAL CONFERENCE ON AMBIENT SYSTEMS, NETWORKS AND TECHNOLOGIES (ANT 2019) / THE 2ND INTERNATIONAL CONFERENCE ON EMERGING DATA AND INDUSTRY 4.0 (EDI40 2019) / AFFILIATED WORKSHOPS, 2019, 151 : 92 - 99
  • [35] Predicting Spinal Surgery Candidacy From Imaging Data Using Machine Learning
    Wilson, Bayard
    Gaonkar, Bilwaj
    Yoo, Bryan
    Salehi, Banafsheh
    Attiah, Mark
    Villaroman, Diane
    Ahn, Christine
    Edwards, Matthew
    Laiwalla, Azim
    Ratnaparkhi, Anshul
    Li, Ien
    Cook, Kirstin
    Beckett, Joel
    Macyszyn, Luke
    NEUROSURGERY, 2021, 89 (01) : 116 - 121
  • [36] Machine learning for predicting AF ablation outcomes using daily heart rhythm data at baseline
    Tang, L.
    Ho, K.
    Tam, R.
    Hawkins, N.
    Lim, M.
    Andrade, J.
    EUROPEAN HEART JOURNAL, 2020, 41 : 432 - 432
  • [37] Predicting adverse outcomes due to diabetes complications with machine learning using administrative health data
    Mathieu Ravaut
    Hamed Sadeghi
    Kin Kwan Leung
    Maksims Volkovs
    Kathy Kornas
    Vinyas Harish
    Tristan Watson
    Gary F. Lewis
    Alanna Weisman
    Tomi Poutanen
    Laura Rosella
    npj Digital Medicine, 4
  • [38] Predicting adverse outcomes due to diabetes complications with machine learning using administrative health data
    Ravaut, Mathieu
    Sadeghi, Hamed
    Leung, Kin Kwan
    Volkovs, Maksims
    Kornas, Kathy
    Harish, Vinyas
    Watson, Tristan
    Lewis, Gary F.
    Weisman, Alanna
    Poutanen, Tomi
    Rosella, Laura
    NPJ DIGITAL MEDICINE, 2021, 4 (01)
  • [39] Author Correction: Identifying multiple sclerosis subtypes using unsupervised machine learning and MRI data
    Arman Eshaghi
    Alexandra L. Young
    Peter A. Wijeratne
    Ferran Prados
    Douglas L. Arnold
    Sridar Narayanan
    Charles R. G. Guttmann
    Frederik Barkhof
    Daniel C. Alexander
    Alan J. Thompson
    Declan Chard
    Olga Ciccarelli
    Nature Communications, 12
  • [40] Predicting badminton outcomes through machine learning and technical action frequencies
    Sheng, Yi
    Liu, Cheng
    Yi, Qing
    Ouyang, Wanli
    Wang, Ru
    Chen, Peijie
    SCIENTIFIC REPORTS, 2025, 15 (01):