Recognition of motor imagery EEG patterns based on common feature analysis

被引:6
|
作者
Huang, Zhenhao [1 ,2 ]
Qiu, Yichun [1 ,3 ]
Sun, Weijun [1 ,4 ]
机构
[1] Guangdong Univ Technol, Sch Automat, Guangzhou, Peoples R China
[2] Guangdong Hong Kong Macao Joint Lab Smart Mfg, Guangzhou, Peoples R China
[3] Minist Educ, Key Lab Intelligent Detect & Internet Things Mfg, Guangzhou, Peoples R China
[4] Guangdong Key Lab IoT Informat Technol, Guangzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
Brain-computer interface; motor imagery; common feature analysis; tensor decomposition; BRAIN-COMPUTER INTERFACES; CLASSIFICATION; DISCRIMINATION; COMMUNICATION; SIGNALS; FILTERS;
D O I
10.1080/2326263X.2020.1783170
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Motor imagery (MI) is particularly attractive in brain-computer interface (BCI) in the sense that it does not need any external stimuli. However, the overall performance is often severely affected by subject's mental states. In this study, a method based on common feature analysis (CFA) was proposed for MI electroencephalogram (EEG) patterns recognition, which can not only improve the recognition accuracy but also help to find reliable and interpretable features associated with specific MI patterns. Evaluation using several open competition datasets justifies that the common features could more accurately identify MI characteristics and hence substantially benefit MI EEG patterns recognition.
引用
收藏
页码:128 / 136
页数:9
相关论文
共 50 条
  • [41] Automatic feature extraction and fusion recognition of motor imagery EEG using multilevel multiscale CNN
    Ming-ai Li
    Jian-fu Han
    Jin-fu Yang
    Medical & Biological Engineering & Computing, 2021, 59 : 2037 - 2050
  • [42] A Lasso quantile periodogram based feature extraction for EEG-based motor imagery
    Meziani, Aymen
    Djouani, Karim
    Medkour, Tarek
    Chibani, Abdelghani
    JOURNAL OF NEUROSCIENCE METHODS, 2019, 328
  • [43] Automatic feature extraction and fusion recognition of motor imagery EEG using multilevel multiscale CNN
    Li, Ming-ai
    Han, Jian-fu
    Yang, Jin-fu
    MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2021, 59 (10) : 2037 - 2050
  • [44] Round Cosine Transform Based Feature Extraction of Motor Imagery EEG Signals
    Braga, R. B.
    Lopes, C. D.
    Becker, T.
    WORLD CONGRESS ON MEDICAL PHYSICS AND BIOMEDICAL ENGINEERING 2018, VOL 2, 2019, 68 (02): : 511 - 515
  • [45] Unsupervised feature extraction with autoencoders for EEG based multiclass motor imagery BCI
    Phadikar, Souvik
    Sinha, Nidul
    Ghosh, Rajdeep
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 213
  • [46] Artificial Bee Colony Based Feature Selection for Motor Imagery EEG Data
    Rakshit, Pratyusha
    Bhattacharyya, Saugat
    Konar, Amit
    Khasnobish, Anwesha
    Tibarewala, D. N.
    Janarthanan, R.
    PROCEEDINGS OF SEVENTH INTERNATIONAL CONFERENCE ON BIO-INSPIRED COMPUTING: THEORIES AND APPLICATIONS (BIC-TA 2012), VOL 2, 2013, 202 : 127 - +
  • [47] Feature Extraction Method of Motor Imagery EEG Based on DTCWT Sample Entropy
    Meng Ming
    Lu Shaona
    Man Haitao
    Ma Yuliang
    Gao Yunyuan
    2015 34TH CHINESE CONTROL CONFERENCE (CCC), 2015, : 3964 - 3968
  • [48] Motor Imagery EEG Decoding Method Based on a Discriminative Feature Learning Strategy
    Yang, Lie
    Song, Yonghao
    Ma, Ke
    Xie, Longhan
    IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2021, 29 : 368 - 379
  • [49] The feature extraction of motor imagery EEG based on the time-frequency correction
    Wang Dongyang
    Jin Jing
    Wang Xingyu
    PROCEEDINGS OF THE 31ST CHINESE CONTROL CONFERENCE, 2012, : 3803 - 3805
  • [50] Feature recognition of motor imaging EEG signals based on deep learning
    Shi, Tianwei
    Ren, Ling
    Cui, Wenhua
    PERSONAL AND UBIQUITOUS COMPUTING, 2019, 23 (3-4) : 499 - 510