On the Inversion of the xfct Radon Transform

被引:3
|
作者
Miqueles, Eduardo X. [1 ]
De Pierro, Alvaro Rodolfo [1 ]
机构
[1] Univ Estadual Campinas, Dept Appl Math, BR-13083859 Sao Paulo, Brazil
基金
巴西圣保罗研究基金会;
关键词
FLUORESCENT COMPUTER-TOMOGRAPHY; RECONSTRUCTION ALGORITHM; RAY;
D O I
10.1111/j.1467-9590.2011.00527.x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It has been recently shown by Fokas [1, 2, 3] and Novikov [4] that the spectral analysis of a particular partial differential equation yields the inversion formula for the problem of computerized emission tomography. In this paper, we show that a similar analysis can be made for the case of X-ray fluorescence tomography.
引用
收藏
页码:394 / 419
页数:26
相关论文
共 50 条
  • [31] Inversion for the Radon line transform in higher dimensions
    Sparling, G
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1998, 356 (1749): : 3041 - 3086
  • [32] On the inversion of the geodesic Radon transform on the hyperbolic plane
    Lissianoi, S
    Ponomarev, I
    INVERSE PROBLEMS, 1997, 13 (04) : 1053 - 1062
  • [33] Modified Radon transform inversion using moments
    Choi, Hayoung
    Ginting, Victor
    Jafari, Farhad
    Mnatsakanov, Robert
    JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2020, 28 (01): : 1 - 15
  • [34] Inversion algorithms for the spherical Radon and cosine transform
    Louis, A. K.
    Riplinger, M.
    Spiess, M.
    Spodarev, E.
    INVERSE PROBLEMS, 2011, 27 (03)
  • [35] INVERSION OF THE RADON-TRANSFORM WITH INCOMPLETE DATA
    RAMM, AG
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 1992, 15 (03) : 159 - 166
  • [36] On the inversion of a generalized Radon transform of seismic type
    Ustaoglu, Zekeriya
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 453 (01) : 287 - 303
  • [37] The Inversion of the Attenuated Radon Transform and Medical Imaging
    UNIFIED APPROACH TO BOUNDARY VALUE PROBLEMS, 2008, 78 : 103 - 111
  • [38] A fast and accurate multilevel inversion of the radon transform
    Brandt, A
    Mann, J
    Brodski, M
    Galun, M
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2000, 60 (02) : 437 - 462
  • [39] INVERSION FORMULA FOR THE WEIGHTED CONICAL RADON TRANSFORM
    Kim, C.
    Moon, S.
    Oh, J.
    EURASIAN JOURNAL OF MATHEMATICAL AND COMPUTER APPLICATIONS, 2024, 12 (04): : 67 - 74
  • [40] Radon transform inversion using the shearlet representation
    Colonna, Flavia
    Easley, Glenn
    Guo, Kanghui
    Labate, Demetrio
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2010, 29 (02) : 232 - 250