Seismic Evidence for Lateral Asthenospheric Flow Beneath the Northeastern Tibetan Plateau Derived From S Receiver Functions

被引:19
|
作者
Xu, Qiang [1 ,2 ]
Pei, Shunping [1 ]
Yuan, Xiaohui [3 ]
Zhao, Junmeng [1 ,2 ]
Liu, Hongbing [1 ,2 ]
Tu, Hongwei [4 ]
Chen, Shuze [1 ]
机构
[1] Chinese Acad Sci, Inst Tibetan Plateau Res, Key Lab Continental Collis & Plateau Uplift, Beijing, Peoples R China
[2] CAS Ctr Excellence Tibetan Plateau Earth Sci, Beijing, Peoples R China
[3] Deutsch GeoForschungsZentrum GFZ, Potsdam, Germany
[4] Earthquake Adm Qianghai, Xining, Qinghai, Peoples R China
基金
中国国家自然科学基金;
关键词
S receiver functions; depth migration technique; LAB; northeastern Tibetan Plateau; asthenospheric flow; MANTLE STRUCTURE BENEATH; ASIAN LITHOSPHERE; QILIAN SHAN; CRUSTAL; MARGIN; DEFORMATION; ANISOTROPY; DISCONTINUITY; SUBDUCTION; DYNAMICS;
D O I
10.1029/2018GC007986
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
We present detailed lithospheric images of the NE Tibetan Plateau by applying the depth migration technique to S receiver functions derived from 113 broadband stations. Our migrated images indicate that the lithosphere-asthenosphere boundary (LAB) lies at depths of 105-120km beneath the Qilian terrane and reaches depths of 126-140km below the Alxa and Ordos blocks. The most prominent variation in the LAB depth is the presence of LAB steps of no less than 20km in the transition zone between the active NE Tibetan Plateau and the surrounding cratonic Alxa and Ordos blocks, which conflicts with the model of southward subduction of the Alxa and Ordos blocks. Furthermore, the marked LAB steps occur at 13010km away from the southern surficial boundary faults between the NE Tibetan Plateau and the surrounding tectonic provinces, corresponding to the North Qilian fault and the Liupanshan fault, respectively. Therefore, we propose that these scenarios of LAB can be attributed to the delamination of fragmented mantle lithosphere in the transition zone between the NE Tibetan Plateau and the surrounding Alxa and Ordos blocks, triggered by lateral asthenospheric flow. In addition, our observations of a thin lithosphere with thickness of 107-115km beneath the Songpan-Ganzi terrane and the west Qinlin orogen greatly facilitate the process of underlying lateral asthenospheric flow. The isostatic uplift of the plateau caused by the delamination of fragmented mantle lithosphere, together with increased horizontal compressive stress, may have led to the outward growth of the NE Tibetan Plateau.
引用
收藏
页码:883 / 894
页数:12
相关论文
共 50 条
  • [31] Lithospheric thickness and upper-mantle deformation beneath the NE Tibetan Plateau inferred from S receiver functions and SKS splitting measurements
    Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China
    不详
    Geophys. J. Int., 3 (1285-1294):
  • [32] P-wave structure of upper mantle beneath the Northeastern Tibetan Plateau from multi-scale seismic tomography
    Li Zhen
    Guo Biao
    Liu QiYuan
    Chen JiuHui
    Li ShunCheng
    Qi ShaoHua
    CHINESE JOURNAL OF GEOPHYSICS-CHINESE EDITION, 2019, 62 (04): : 1244 - 1255
  • [33] Radial Anisotropy in the Crust beneath the Northeastern Tibetan Plateau from Ambient Noise Tomography
    Jing Tan
    Hongyi Li
    Xinfu Li
    Ming Zhou
    Longbin Ouyang
    Sanjian Sun
    Dan Zheng
    Journal of Earth Science, 2015, (06) : 864 - 871
  • [34] Radial Anisotropy in the Crust beneath the Northeastern Tibetan Plateau from Ambient Noise Tomography
    Tan, Jing
    Li, Hongyi
    Li, Xinfu
    Zhou, Ming
    Ouyang, Longbin
    Sun, Sanjian
    Zheng, Dan
    JOURNAL OF EARTH SCIENCE, 2015, 26 (06) : 864 - 871
  • [35] Radial Anisotropy in the Crust beneath the Northeastern Tibetan Plateau from Ambient Noise Tomography
    Jing Tan
    Hongyi Li
    Xinfu Li
    Ming Zhou
    Longbin Ouyang
    Sanjian Sun
    Dan Zheng
    Journal of Earth Science, 2015, 26 (06) : 864 - 871
  • [36] Radial anisotropy in the crust beneath the northeastern Tibetan Plateau from ambient noise tomography
    Jing Tan
    Hongyi Li
    Xinfu Li
    Ming Zhou
    Longbin Ouyang
    Sanjian Sun
    Dan Zheng
    Journal of Earth Science, 2015, 26 : 864 - 871
  • [37] Seismic anisotropy of the Northeastern Tibetan Plateau from shear wave splitting analysis
    Li, Yonghua
    Wu, Qingju
    Zhang, Fengxue
    Feng, Qiangqiang
    Zhang, Ruiqing
    EARTH AND PLANETARY SCIENCE LETTERS, 2011, 304 (1-2) : 147 - 157
  • [38] Seismic anisotropy of the Northeastern Tibetan Plateau from shear wave splitting analysis
    Institute of Geophysics, Chinese Earthquake Administration, Beijing 100081, China
    Earth Plan. Sci. Lett., 1-2 (147-157):
  • [39] Abrupt deglaciation on the northeastern Tibetan Plateau: evidence from Lake Qinghai
    Liu, Xiuju
    Colman, Steven M.
    Brown, Erik T.
    Henderson, Andrew C. G.
    Werne, Josef P.
    Holmes, Jonathan A.
    JOURNAL OF PALEOLIMNOLOGY, 2014, 51 (02) : 223 - 240
  • [40] Seismic anisotropy inferred from direct S-wave-derived splitting measurements and its geodynamic implications beneath southeastern Tibetan Plateau
    Tiwari, Ashwani Kant
    Singh, Arun
    Eken, Tuna
    Singh, Chandrani
    SOLID EARTH, 2017, 8 (02) : 435 - 452