Three-dimensional high-resolution quantitative microscopy of extended crystals

被引:120
|
作者
Godard, P. [1 ]
Carbone, G. [2 ]
Allain, M. [1 ]
Mastropietro, F. [2 ,3 ]
Chen, G. [4 ]
Capello, L. [5 ]
Diaz, A. [2 ]
Metzger, T. H. [2 ]
Stangl, J. [4 ]
Chamard, V. [1 ]
机构
[1] Aix Marseille Univ, Inst Fresnel, CNRS, FST St Jerome, F-13397 Marseille 20, France
[2] European Synchrotron Radiat Facil, F-38043 Grenoble, France
[3] CEA Grenoble, Inst Nanosci & Cryogenie, Lab Nanostruct & Rayonnement Synchrotron SP2M, F-38054 Grenoble 9, France
[4] Johannes Kepler Univ Linz, Inst Semicond & Solid State Phys, A-4040 Linz, Austria
[5] Soitec SA, F-38190 Bernin, France
来源
NATURE COMMUNICATIONS | 2011年 / 2卷
关键词
X-RAY-DIFFRACTION; STRAIN;
D O I
10.1038/ncomms1569
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Hard X-ray lens-less microscopy raises hopes for a non-invasive quantitative imaging, capable of achieving the extreme resolving power demands of nanoscience. However, a limit imposed by the partial coherence of third generation synchrotron sources restricts the sample size to the micrometer range. Recently, X-ray ptychography has been demonstrated as a solution for arbitrarily extending the field of view without degrading the resolution. Here we show that ptychography, applied in the Bragg geometry, opens new perspectives for crystalline imaging. The spatial dependence of the three-dimensional Bragg peak intensity is mapped and the entire data subsequently inverted with a Bragg-adapted phase retrieval ptychographical algorithm. We report on the image obtained from an extended crystalline sample, nanostructured from a silicon-on-insulator substrate. The possibility to retrieve, without transverse size restriction, the highly resolved three-dimensional density and displacement field will allow for the unprecedented investigation of a wide variety of crystalline materials, ranging from life science to microelectronics.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] A high-resolution, three-dimensional thin endoscope for fetal surgery
    E. Kobayashi
    T. Ando
    H. Yamashita
    I. Sakuma
    T. Fukuyo
    K. Ando
    T. Chiba
    Surgical Endoscopy, 2009, 23 : 2450 - 2453
  • [42] High-resolution three-dimensional sensing of fast deforming objects
    Fong, P
    Buron, F
    2005 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS, VOLS 1-4, 2005, : 4055 - 4060
  • [43] Three-dimensional spiral technique for high-resolution functional MRI
    Hu, Yanle
    Glover, Gary H.
    MAGNETIC RESONANCE IN MEDICINE, 2007, 58 (05) : 947 - 951
  • [44] High-resolution deconvolved beamforming for three-dimensional imaging sonars
    WANG Peng
    CHI Cheng
    JI Yongqiang
    HUANG Yong
    LIU Jiyuan
    HUANG Haining
    ChineseJournalofAcoustics, 2021, 40 (01) : 95 - 110
  • [45] A New System for Three-Dimensional High-Resolution Geophysical Surveys
    Sack, Peter
    Haugland, Tor
    Stock, Graeme
    MARINE TECHNOLOGY SOCIETY JOURNAL, 2012, 46 (04) : 33 - 39
  • [46] High-resolution three-dimensional imaging for precise staging in melanoma
    Merz, Simon F.
    Jansen, Philipp
    Ulankiewicz, Ricarda
    Bornemann, Lea
    Schimming, Tobias
    Griewank, Klaus
    Cibir, Zuelal
    Kraus, Andreas
    Stoffels, Ingo
    Aspelmeier, Timo
    Brandau, Sven
    Schadendorf, Dirk
    Hadaschik, Eva
    Ebel, Gernot
    Gunzer, Matthias
    Klode, Joachim
    EUROPEAN JOURNAL OF CANCER, 2021, 159 : 182 - 193
  • [47] Hybrid High-Resolution Three-Dimensional Nanofabrication for Metamaterials and Nanoplasmonics
    Staude, Isabelle
    Decker, Manuel
    Ventura, Michael J.
    Jagadish, Chennupati
    Neshev, Dragomir N.
    Gu, Min
    Kivshar, Yuri S.
    ADVANCED MATERIALS, 2013, 25 (09) : 1260 - 1264
  • [48] Controlled serial grinding for high-resolution three-dimensional reconstruction
    Chinga, G
    Johnsen, PO
    Diserud, O
    JOURNAL OF MICROSCOPY-OXFORD, 2004, 214 : 13 - 21
  • [49] High-Resolution Three-dimensional and Cinematic Rendering MR Neurography
    Fritz, Jan
    Ahlawat, Shivani
    RADIOLOGY, 2018, 288 (01) : 25 - 25
  • [50] High-resolution and three-dimensional mapping of soil texture of China
    Liu, Feng
    Zhang, Gan-Lin
    Song, Xiaodong
    Li, Decheng
    Zhao, Yuguo
    Yang, Jinling
    Wu, Huayong
    Yang, Fei
    GEODERMA, 2020, 361