Inferring directed networks using a rank-based connectivity measure

被引:10
|
作者
Leguia, Marc G. [1 ,2 ]
Martinez, Cristina G. B. [2 ]
Malvestio, Irene [2 ,3 ,4 ]
Campo, Adria Tauste [5 ,6 ,7 ]
Rocamora, Rodrigo [6 ,8 ]
Levnajic, Zoran [1 ,9 ]
Andrzejak, Ralph G. [2 ,10 ]
机构
[1] Fac Informat Studies, Novo Mesto 8000, Slovenia
[2] Univ Pompeu Fabra, Dept Commun & Informat Technol, Barcelona 08018, Spain
[3] Univ Florence, Dept Phys & Astron, I-50119 Sesto Fiorentino, Italy
[4] CNR, Inst Complex Syst, I-50119 Sesto Fiorentino, Italy
[5] Univ Pompeu Fabra, Dept Informat & Commun Technol, Ctr Brain & Cognit, Barcelona 08018, Spain
[6] Univ Pompeu Fabra, IMIM Hosp del Mar, Dept Neurol, Epilepsy Unit, Barcelona 08003, Spain
[7] Pasqual Maragall Fdn, Barcelonasseta Brain Res Ctr, Barcelona 08005, Spain
[8] Univ Pompeu Fabra, Fac Hlth & Life Sci, Barcelona 08003, Spain
[9] Inst Jozef Stefan, Ljubljana 1000, Slovenia
[10] Barcelona Inst Sci & Technol, Inst Bioengn Catalonia IBEC, Baldiri Reixac 10-12, Barcelona 08028, Spain
基金
欧盟地平线“2020”;
关键词
TIME-SERIES; CAUSALITY; INFERENCE; SEIZURES;
D O I
10.1103/PhysRevE.99.012319
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Inferring the topology of a network using the knowledge of the signals of each of the interacting units is key to understanding real-world systems. One way to address this problem is using data-driven methods like cross-correlation or mutual information. However, these measures lack the ability to distinguish the direction of coupling. Here, we use a rank-based nonlinear interdependence measure originally developed for pairs of signals. This measure not only allows one to measure the strength but also the direction of the coupling. Our results for a system of coupled Lorenz dynamics show that we are able to consistently infer the underlying network for a subrange of the coupling strength and link density. Furthermore, we report that the addition of dynamical noise can benefit the reconstruction. Finally, we show an application to multichannel electroencephalographic recordings from an epilepsy patient.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Quantification of Effective Connectivity in the Brain Using a Measure of Directed Information
    Liu, Ying
    Aviyente, Selin
    [J]. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE, 2012, 2012
  • [42] Analysis and design of rank-based classifiers
    Bereta, Michal
    Pedrycz, Witold
    Reformat, Marek
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2013, 40 (08) : 3256 - 3265
  • [43] RANK-BASED ESTIMATION FOR GARCH PROCESSES
    Andrews, Beth
    [J]. ECONOMETRIC THEORY, 2012, 28 (05) : 1037 - 1064
  • [44] Rank-based algorithms for analysis of microarrays
    Liu, WM
    Mei, R
    Bartell, DM
    Di, XJ
    [J]. MICROARRAYS: OPTICAL TECHNOLOGIES AND INFORMATICS, 2001, 4266 : 56 - 67
  • [45] Rank-based autoregressive order identification
    Garel, B
    Hallin, M
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1999, 94 (448) : 1357 - 1371
  • [46] On rank-based effectiveness measures and optimization
    Robertson, Stephen
    Zaragoza, Hugo
    [J]. INFORMATION RETRIEVAL, 2007, 10 (03): : 321 - 339
  • [47] Rank-based decompositions of morphological templates
    Sussner, P
    Ritter, GX
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2000, 9 (08) : 1420 - 1430
  • [48] On rank-based effectiveness measures and optimization
    Stephen Robertson
    Hugo Zaragoza
    [J]. Information Retrieval, 2007, 10 : 321 - 339
  • [49] REGRESSION DIAGNOSTICS FOR RANK-BASED METHODS
    MCKEAN, JW
    SHEATHER, SJ
    HETTMANSPERGER, TP
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1990, 85 (412) : 1018 - 1028
  • [50] Scheduling games with rank-based utilities
    Rosner, Shaul
    Tamir, Tami
    [J]. GAMES AND ECONOMIC BEHAVIOR, 2023, 140 : 229 - 252