Transforming energy using quantum dots

被引:82
|
作者
Lu, Haipeng [1 ]
Huang, Zhiyuan [1 ]
Martinez, Marissa S. [1 ]
Johnson, Justin C. [1 ]
Luther, Joseph M. [1 ]
Beard, Matthew C. [1 ]
机构
[1] Natl Renewable Energy Lab, Chem & Nanosci Ctr, Golden, CO 80401 USA
关键词
MULTIPLE EXCITON GENERATION; PHOTOCATALYTIC HYDROGEN EVOLUTION; PHOTOELECTROCHEMICAL CO2 REDUCTION; EFFICIENT CARRIER MULTIPLICATION; OPEN-CIRCUIT VOLTAGE; SEMICONDUCTOR NANOCRYSTALS; SOLAR-CELLS; UP-CONVERSION; ELECTRON-TRANSFER; PEROVSKITE NANOCRYSTALS;
D O I
10.1039/c9ee03930a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Colloidal quantum dots (QDs) have emerged as versatile and efficient scaffolds to absorb light and then manipulate, direct, and convert that energy into other useful forms of energy. The QD characteristics (optical, electrical, physical) can be readily tuned via solution phase chemistries in order to affect the flow of energy, initially contained in the photons of light, using rational design. Key parameters under control are the size and shape, internal composition (e.g., alloys, core/shell heterostructures, semiconductor/metal interfaces), surface composition (ligand chemistries), and film composition (e.g., QD-QD electronic coupling, bulk heterostructure formation, QD/biological interfaces). In this review, we summarize recent progress using QDs in energy conversion architectures with the express goal of transforming optical energy to other forms of energy, including electricity, photons with different energies, and chemical bonds, i.e., photovoltaics, photon up- or down-conversion, and photocatalytic process, respectively. The advantages of using QDs in absorbing and then directing and converting optical energy over molecular chromophores are highlighted. Finally, we discuss ongoing challenges and opportunities associated with using QDs for absorbing, manipulating and directing the flow of energy.
引用
收藏
页码:1347 / 1376
页数:30
相关论文
共 50 条
  • [21] Quantum Communication Using Semiconductor Quantum Dots
    Vajner, Daniel A.
    Rickert, Lucas
    Gao, Timm
    Kaymazlar, Koray
    Heindel, Tobias
    ADVANCED QUANTUM TECHNOLOGIES, 2022, 5 (07)
  • [22] Bioluminescence-Based Energy Transfer Using Semiconductor Quantum Dots as Acceptors
    Samanta, Anirban
    Medintz, Igor L.
    SENSORS, 2020, 20 (10)
  • [23] Shape dependent energy optimization in quantum dots
    Mohammadi, Abbasali
    Bahrami, Fariba
    Mohammadpour, Hakimeh
    APPLIED MATHEMATICS LETTERS, 2012, 25 (09) : 1240 - 1244
  • [24] Exciton binding energy in semiconductor quantum dots
    Pokutnii, S. I.
    SEMICONDUCTORS, 2010, 44 (04) : 488 - 493
  • [25] Simulating Energy Transfer in Collections of Quantum Dots
    Glosser, Connor
    Li, Jie
    Dault, Dan
    Piermaroechi, Carlo
    Shanker, B.
    2015 USNC-URSI RADIO SCIENCE MEETING (JOINT WITH AP-S SYMPOSIUM) PROCEEDINGS, 2015, : 79 - 79
  • [26] Are luminescent quantum dots efficient energy acceptors?
    Clapp, AR
    Medintz, IL
    Fisher, BR
    Mattoussi, H
    Nanobiophotonics and Biomedical Applications II, 2005, 5705 : 183 - 191
  • [27] Electron energy in quantum dots of different configurations
    Tovstyuk, Cornelia C.
    MOLECULAR CRYSTALS AND LIQUID CRYSTALS, 2020, 700 (01) : 30 - 33
  • [28] Electron energy levels in ZnSe quantum dots
    Nikesh, V. V.
    Lad, Amit D.
    Kimura, Seiji
    Nozaki, Shinji
    Mahamuni, Shailaja
    JOURNAL OF APPLIED PHYSICS, 2006, 100 (11)
  • [29] Energy levels of bilayer graphene quantum dots
    da Costa, D. R.
    Zarenia, M.
    Chaves, Andrey
    Farias, G. A.
    Peeters, F. M.
    PHYSICAL REVIEW B, 2015, 92 (11):
  • [30] Carbon Quantum Dots for Energy Applications: A Review
    Rasal, Akash S.
    Yadav, Sudesh
    Yadav, Anchal
    Kashale, Anil A.
    Manjunatha, Subrahmanya Thagare
    Altaee, Ali
    Chang, Jia-Yaw
    ACS APPLIED NANO MATERIALS, 2021, 4 (07) : 6515 - 6541