Transforming energy using quantum dots

被引:82
|
作者
Lu, Haipeng [1 ]
Huang, Zhiyuan [1 ]
Martinez, Marissa S. [1 ]
Johnson, Justin C. [1 ]
Luther, Joseph M. [1 ]
Beard, Matthew C. [1 ]
机构
[1] Natl Renewable Energy Lab, Chem & Nanosci Ctr, Golden, CO 80401 USA
关键词
MULTIPLE EXCITON GENERATION; PHOTOCATALYTIC HYDROGEN EVOLUTION; PHOTOELECTROCHEMICAL CO2 REDUCTION; EFFICIENT CARRIER MULTIPLICATION; OPEN-CIRCUIT VOLTAGE; SEMICONDUCTOR NANOCRYSTALS; SOLAR-CELLS; UP-CONVERSION; ELECTRON-TRANSFER; PEROVSKITE NANOCRYSTALS;
D O I
10.1039/c9ee03930a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Colloidal quantum dots (QDs) have emerged as versatile and efficient scaffolds to absorb light and then manipulate, direct, and convert that energy into other useful forms of energy. The QD characteristics (optical, electrical, physical) can be readily tuned via solution phase chemistries in order to affect the flow of energy, initially contained in the photons of light, using rational design. Key parameters under control are the size and shape, internal composition (e.g., alloys, core/shell heterostructures, semiconductor/metal interfaces), surface composition (ligand chemistries), and film composition (e.g., QD-QD electronic coupling, bulk heterostructure formation, QD/biological interfaces). In this review, we summarize recent progress using QDs in energy conversion architectures with the express goal of transforming optical energy to other forms of energy, including electricity, photons with different energies, and chemical bonds, i.e., photovoltaics, photon up- or down-conversion, and photocatalytic process, respectively. The advantages of using QDs in absorbing and then directing and converting optical energy over molecular chromophores are highlighted. Finally, we discuss ongoing challenges and opportunities associated with using QDs for absorbing, manipulating and directing the flow of energy.
引用
收藏
页码:1347 / 1376
页数:30
相关论文
共 50 条
  • [1] Nanophotonic energy converter using ZnO quantum dots
    Yatsui, T.
    Jeong, H. S.
    Kawazoe, T.
    Ohtsu, M.
    2008 CONFERENCE ON LASERS AND ELECTRO-OPTICS & QUANTUM ELECTRONICS AND LASER SCIENCE CONFERENCE, VOLS 1-9, 2008, : 2127 - +
  • [2] Energy relaxation in quantum dots
    Verzelen, O
    Bastard, G
    Ferreira, R
    PHYSICAL REVIEW B, 2002, 66 (08):
  • [3] Transforming C60 molecules into graphene quantum dots
    Jiong Lu
    Pei Shan Emmeline Yeo
    Chee Kwan Gan
    Ping Wu
    Kian Ping Loh
    Nature Nanotechnology, 2011, 6 : 247 - 252
  • [4] Transforming C60 molecules into graphene quantum dots
    Lu, Jiong
    Yeo, Pei Shan Emmeline
    Gan, Chee Kwan
    Wu, Ping
    Loh, Kian Ping
    NATURE NANOTECHNOLOGY, 2011, 6 (04) : 247 - 252
  • [5] Rectifying the output of vibrational piezoelectric energy harvester using quantum dots
    Li, Lijie
    SCIENTIFIC REPORTS, 2017, 7
  • [6] Rectifying the output of vibrational piezoelectric energy harvester using quantum dots
    Lijie Li
    Scientific Reports, 7
  • [7] Analysis of Protease Activity Using Quantum Dots and Resonance Energy Transfer
    Kim, Gae Baik
    Kim, Young-Pil
    THERANOSTICS, 2012, 2 (02): : 127 - 138
  • [8] Ultrafast energy relaxation in quantum dots
    Woggon, U
    Giessen, H
    Gindele, F
    Wind, O
    Fluegel, B
    Peyghambarian, N
    PHYSICAL REVIEW B, 1996, 54 (24): : 17681 - 17690
  • [9] Thermoelectric energy harvesting with quantum dots
    Sothmann, Bjorn
    Sanchez, Rafael
    Jordan, Andrew N.
    NANOTECHNOLOGY, 2015, 26 (03)
  • [10] Energy level statistics of quantum dots
    Tsau, Chien-Yu
    Nghiem, Diu
    Joynt, Robert
    Halley, J. Woods
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2007, 19 (18)