Inequalities for sine and cosine polynomials

被引:0
|
作者
Alzer, Horst [1 ]
Kwong, Man Kam [2 ]
机构
[1] Morsbacher Str 10, D-51545 Waldbrol, Germany
[2] Hong Kong Polytech Univ, Hunghom, Hong Kong, Peoples R China
来源
关键词
Sine polynomials; cosine polynomials; inequalities; SERIES;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we prove that, letting lambda be a real number, (i) lambda Sigma(n)(k=1) (-1)(k) sin(kx) <= Sigma(n)(k=1) sin(kx)/k is valid for all n >= 1 and x is an element of [0, pi] if and only if lambda is an element of [0, 2]. This extends the classical Fejer-Jackson inequality which states that (i) holds for lambda = 0. An application of (i) reveals if a > 0 and b are real numbers, then (ii) 41/96 + Sigma(n )(k=1)cos(kx)/k+1 >= a(cos(x) + b)(2) holds for all n >= 2 and x is an element of [0, pi] if and only if a <= 2/75 and b = 3/8. This refines a result of Koumandos (2001) who proved that the expression on the left-hand side of (ii) is nonnegative for all n >= 2 and x is an element of [0,pi]. The cosine polynomial in (ii) was first studied by Rogosinski and Szego in 1928.
引用
收藏
页码:301 / 317
页数:17
相关论文
共 50 条
  • [31] FURTHER IMPROVEMENTS OF ASKEY-STEINIG'S INEQUALITIES FOR FINITE SUMS INVOLVING SINE AND COSINE
    Alzer, Horst
    Kwong, Man Kam
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 149 (05) : 2057 - 2065
  • [32] SINE AND COSINE EQUATIONS ON HYPERGROUPS
    Fechner, Zywilla
    Szekelyhidi, Laszlo
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2017, 11 (04): : 808 - 824
  • [33] Sine, cosine and exponential integrals
    Jameson, G. J. O.
    MATHEMATICAL GAZETTE, 2015, 99 (545): : 276 - 289
  • [34] EIGENVALUES OF SINE AND COSINE MATRICES
    CALLAN, D
    WAHBA, G
    AMERICAN MATHEMATICAL MONTHLY, 1991, 98 (01): : 64 - 65
  • [35] Simple expansions for sine and cosine
    Withers, Christopher S.
    Nadarajah, Saralees
    INTERNATIONAL JOURNAL OF MATHEMATICAL EDUCATION IN SCIENCE AND TECHNOLOGY, 2014, 45 (05) : 738 - 741
  • [36] Rational Approximations of Sine and Cosine
    Azim, Mashrur
    Griffin, Christopher
    MATHEMATICS ENTHUSIAST, 2025, 22 (03):
  • [37] SINE AND COSINE FUNCTION GENERATOR
    STOREY, N
    ELECTRONIC ENGINEERING, 1975, 47 (568): : 18 - 19
  • [38] ON COSINE AND SINE FUNCTIONAL EQUATIONS
    KANNAPPA.P
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 16 (01): : 182 - &
  • [39] Precision sine—cosine converter
    V. M. Domrachev
    I. P. Sigachev
    A. P. Sinitsyn
    Measurement Techniques, 1997, 40 : 616 - 618
  • [40] SINE COSINE SIGNAL INTERPOLATOR
    GLUKHOV, OD
    LEBEDEV, LY
    PRITSKER, VI
    SVERDLICHENKO, VD
    MEASUREMENT TECHNIQUES USSR, 1992, 35 (03): : 291 - 293