Pedestrian attribute recognition: A survey

被引:55
|
作者
Wang, Xiao [1 ,3 ]
Zheng, Shaofei [1 ]
Yang, Rui [1 ]
Zheng, Aihua [2 ]
Chen, Zhe [4 ]
Tang, Jin [1 ]
Luo, Bin [1 ]
机构
[1] Anhui Univ, Sch Comp Sci & Technol, Hefei, Peoples R China
[2] Anhui Univ, Sch Artificial Intelligence, Hefei, Peoples R China
[3] Peng Cheng Lab, Shenzhen, Peoples R China
[4] Univ Sydney, Sch Comp Sci, Fac Engn, Sydney, NSW, Australia
基金
中国博士后科学基金; 澳大利亚研究理事会;
关键词
Pedestrian attribute recognition; Multi-label learning; Multi-task learning; Deep learning; CNN-RNN; DEEP; GENDER; POSE; AGE;
D O I
10.1016/j.patcog.2021.108220
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Pedestrian Attribute Recognition (PAR) is an important task in computer vision community and plays an important role in practical video surveillance. The goal of this paper is to review existing works using traditional methods or based on deep learning networks. Firstly, we introduce the background of pedestrian attribute recognition, including the fundamental concepts and formulation of pedestrian attributes and corresponding challenges. Secondly, we analyze popular solutions for this task from eight perspectives. Thirdly, we discuss the specific attribute recognition, then, give a comparison between deep learning and traditional algorithm based PAR methods. After that, we show the connections between PAR and other computer vision tasks. Fourthly, we introduce the benchmark datasets, evaluation metrics in this community, and give a brief performance comparison. Finally, we summarize this paper and give several possible research directions for PAR. The project page of this paper can be found at: https://sites.google.com/view/ahu-pedestrianattributes/ . (c) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Depthwise Separable Convolutional Neural Networks for Pedestrian Attribute Recognition
    Junejo I.N.
    Ahmed N.
    SN Computer Science, 2021, 2 (2)
  • [42] A Method of Pedestrian Fine-grained Attribute Detection and Recognition
    Ma, Xianqin
    Yu, Chongchong
    Yang, Xin
    Chen, Xiuxin
    Chen, Jianzhang
    Zhou, Lan
    2019 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2019,
  • [43] Visual-Semantic Graph Reasoning for Pedestrian Attribute Recognition
    Li, Qiaozhe
    Zhao, Xin
    He, Ran
    Huang, Kaiqi
    THIRTY-THIRD AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FIRST INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / NINTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2019, : 8634 - 8641
  • [44] HIERARCHICAL PEDESTRIAN ATTRIBUTE RECOGNITION BASED ON ADAPTIVE REGION LOCALIZATION
    Yao, Chunfeng
    Feng, Bailan
    Li, Defeng
    Li, Jian
    2017 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA & EXPO WORKSHOPS (ICMEW), 2017,
  • [45] Correlation Enhancement with Graph Convolutional Network for Pedestrian Attribute Recognition
    Chen, Chen
    Zuo, Zhihan
    Fang, Yuchun
    Cao, Yilu
    Zhang, Yaofang
    2022 IEEE 34TH INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE, ICTAI, 2022, : 799 - 803
  • [46] Pedestrian Attribute Recognition in Surveillance Scenario: A Survey and Future Perspectives on Frame vs. Video Based Methods
    Cao Y.
    Lu W.
    Yu J.
    Zhou Y.
    Hu H.
    Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics, 2024, 36 (03): : 336 - 356
  • [47] Pedestrian Attribute Recognition in Video Surveillance Scenarios Based on View-attribute Attention Localization
    Chen, Wei-Chen
    Yu, Xin-Yi
    Ou, Lin-Lin
    MACHINE INTELLIGENCE RESEARCH, 2022, 19 (02) : 153 - 168
  • [48] Pedestrian Attribute Recognition in Video Surveillance Scenarios Based on View-attribute Attention Localization
    Wei-Chen Chen
    Xin-Yi Yu
    Lin-Lin Ou
    Machine Intelligence Research, 2022, 19 : 153 - 168
  • [49] Pedestrian Attribute Recognition in Video Surveillance Scenarios Based on View-attribute Attention Localization
    Wei-Chen Chen
    Xin-Yi Yu
    Lin-Lin Ou
    Machine Intelligence Research, 2022, (02) : 153 - 168
  • [50] Exponential Information Bottleneck Theory Against Intra-Attribute Variations for Pedestrian Attribute Recognition
    Wu, Junyi
    Huang, Yan
    Gao, Min
    Gao, Zhipeng
    Zhao, Jianqiang
    Shi, Jieming
    Zhang, Anguo
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2023, 18 : 5623 - 5635