Weighted inequalities for certain Hardy-type averaging operators in R-n are shown to be equivalent to weighted inequalities for one-dimensional operators. Known results for the one-dimensional operators are applied to give weight characterisations, with best constants in some cases, in the higher-dimensional setting. Operators considered include averages over all dilations of very general starshaped regions as well as averages over all balls touching the origin. As a consequence, simple weight conditions are given which imply weighted norm inequalities for a class of integral operators with monotone kernels.