The Einstein-Dirac equation on Sasakian 3-manifolds

被引:6
|
作者
Belgun, FA [1 ]
机构
[1] Humboldt Univ, Inst Math, D-10099 Berlin, Germany
关键词
Einstein-Dirac equation; Sasakian; 3-manifolds;
D O I
10.1016/S0393-0440(00)00054-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that a Sasakian 3-manifold admitting a non-trivial solution to the Einstein-Dirac equation has necessarily constant scalar curvature. In the case when this scalar curvature is non-zero, their classification follows then from a result by Th. Friedrich and E.C. Kim. We also prove that a scalar-flat Sasakian 3-manifold admits no local Einstein spinors. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:229 / 236
页数:8
相关论文
共 50 条
  • [11] Integration of the Einstein-Dirac equations
    Bagrov, V. G.
    Obukhov, V. V.
    Sakhapov, A. G.
    Journal of Mathematical Physics, 37 (11):
  • [12] Integration of the Einstein-Dirac equations
    Bagrov, VG
    Obukhov, VV
    Sakhapov, AG
    JOURNAL OF MATHEMATICAL PHYSICS, 1996, 37 (11) : 5599 - 5610
  • [13] HAMILTONIAN FOR EINSTEIN-DIRAC FIELD
    NELSON, JE
    TEITELBOIM, C
    PHYSICS LETTERS B, 1977, 69 (01) : 81 - 84
  • [14] A REMARK ON TRANS-SASAKIAN 3-MANIFOLDS
    Wang, Yaning
    Wang, Wenjie
    REVISTA DE LA UNION MATEMATICA ARGENTINA, 2019, 60 (01): : 257 - 264
  • [15] On Slant Curves in Sasakian Lorentzian 3-Manifolds
    Lee, Ji-Eun
    INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY, 2020, 13 (02): : 108 - 115
  • [16] AN EXACT SOLUTION OF THE EINSTEIN-DIRAC EQUATIONS
    RADFORD, CJ
    KLOTZ, AH
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1983, 16 (02): : 317 - 320
  • [17] Einstein-Dirac system in semiclassical gravity
    Kain, Ben
    PHYSICAL REVIEW D, 2023, 107 (12)
  • [18] NEW SOLUTION OF EINSTEIN-DIRAC EQUATIONS
    GUTS, AK
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII FIZIKA, 1979, (08): : 91 - 95
  • [19] Quantum Einstein-Dirac Bianchi universes
    Damour, Thibault
    Spindel, Philippe
    PHYSICAL REVIEW D, 2011, 83 (12):
  • [20] Magnetic curves in quasi-Sasakian 3-manifolds
    Jun-ichi Inoguchi
    Marian Ioan Munteanu
    Ana Irina Nistor
    Analysis and Mathematical Physics, 2019, 9 : 43 - 61