A Thermodynamic Model of Diameter- and Temperature-dependent Semiconductor Nanowire Growth

被引:7
|
作者
Li, Xinlei [1 ,2 ]
Ni, Jun [3 ]
Zhang, Ruiqin [4 ,5 ]
机构
[1] Beijing Computat Sci Res Ctr, Beijing 100193, Peoples R China
[2] South China Normal Univ, Inst Laser Life Sci, Coll Biophoton, MOE Key Lab Laser Life Sci, Guangzhou 510631, Guangdong, Peoples R China
[3] Tsinghua Univ, Dept Phys, State Key Lab Low Dimens Quantum Phys, Beijing 100084, Peoples R China
[4] City Univ Hong Kong, Dept Phys, Hong Kong, Hong Kong, Peoples R China
[5] City Univ Hong Kong, Shenzhen Res Inst, Shenzhen 518057, Peoples R China
来源
SCIENTIFIC REPORTS | 2017年 / 7卷
关键词
SURFACE-ENERGY; DIRECTION; ORIENTATION; GERMANIUM;
D O I
10.1038/s41598-017-15077-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Creating and manipulating nanowires (NWs) with controllable growth direction and crystal orientation is important to meeting the urgent demands of emerging applications with designed properties. Revealing the underlying mechanisms of the experimentally demonstrated effects of NW diameter and growth temperature on growth direction is crucial for applications. Here, we establish a thermodynamic model to clarify the dependence of NW growth direction on diameter and temperature via the vapor-liquid-solid growth mechanism, enabling analysis of NW critical length between unstable and stable states. At a small critical length, NWs with a large diameter or grown at low temperature tend to grow along the <111> direction, while at a large critical length, NWs with a small diameter or grown at high temperature favor the <110> direction. Specific growth parameters of ZnSe NW have been obtained which can guide the design of functional NWs for applications.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Temperature-dependent photoluminescence analysis of ZnO nanowire array annealed in air
    Sun, Yanan
    Gu, Xiuquan
    Zhao, Yulong
    Wang, Linmeng
    Qiang, Yinghuai
    SUPERLATTICES AND MICROSTRUCTURES, 2018, 117 : 520 - 526
  • [22] Temperature-dependent thermodynamic properties of refractory metals: Nonempirical study
    Davidov, G
    Fuks, D
    Dorfman, S
    JOURNAL OF CHEMICAL PHYSICS, 1996, 104 (22): : 9075 - 9078
  • [23] Thermodynamic and structural basis of temperature-dependent gating in TRP channels
    Diaz-Franulic, Ignacio
    Verdugo, Christian
    Gonzalez, Felipe
    Gonzalez-Nilo, Fernando
    Latorre, Ramon
    BIOCHEMICAL SOCIETY TRANSACTIONS, 2021, 49 (05) : 2211 - 2219
  • [24] TEMPERATURE-DEPENDENT FRUSTRATION - A THERMODYNAMIC RATHER THAN A TOPOLOGICAL EFFECT
    DOSSANTOS, RJV
    LYRA, ML
    PHYSICA A, 1992, 182 (1-2): : 133 - 144
  • [25] Thermodynamic limits of atmospheric water harvesting with temperature-dependent adsorption
    Li, Adela Chenyang
    Zhang, Lenan
    Zhong, Yang
    Li, Xiangyu
    El Fil, Bachir
    Fulvio, Pasquale F.
    Walton, Krista S.
    Wang, Evelyn N.
    APPLIED PHYSICS LETTERS, 2022, 121 (16)
  • [26] Temperature-dependent built-in potential in organic semiconductor devices
    Kemerink, M
    Kramer, JM
    Gommans, HHP
    Janssen, RAJ
    APPLIED PHYSICS LETTERS, 2006, 88 (19)
  • [27] EFFECT OF TEMPERATURE-DEPENDENT BAND SHIFTS ON SEMICONDUCTOR TRANSPORT PROPERTIES
    EMIN, D
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1976, 21 (03): : 436 - 436
  • [28] Temperature-dependent Oxidation of Carbon Nanotubes for Metal/Semiconductor Separation
    Yoo, Sweejiang
    Yi, Wenhui
    Khalid, Asif
    Si, Jinhai
    Hou, Xun
    CHEMISTRY LETTERS, 2020, 49 (10) : 1154 - 1158
  • [29] THE EFFECT OF TEMPERATURE-DEPENDENT ENERGIES ON SEMICONDUCTOR THERMOPOWER FORMULAS - REPLY
    EMIN, D
    PHILOSOPHICAL MAGAZINE B-PHYSICS OF CONDENSED MATTER STATISTICAL MECHANICS ELECTRONIC OPTICAL AND MAGNETIC PROPERTIES, 1985, 51 (05): : L53 - L56
  • [30] THE FORMATION OF 2 ALUMINUM SEMICONDUCTOR INTERFACES - A TEMPERATURE-DEPENDENT STUDY
    STEPHENS, C
    MCGOVERN, IT
    MCLEAN, AB
    BRAUN, W
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 1988, 6 (04): : 1326 - 1330