A Thermodynamic Model of Diameter- and Temperature-dependent Semiconductor Nanowire Growth

被引:7
|
作者
Li, Xinlei [1 ,2 ]
Ni, Jun [3 ]
Zhang, Ruiqin [4 ,5 ]
机构
[1] Beijing Computat Sci Res Ctr, Beijing 100193, Peoples R China
[2] South China Normal Univ, Inst Laser Life Sci, Coll Biophoton, MOE Key Lab Laser Life Sci, Guangzhou 510631, Guangdong, Peoples R China
[3] Tsinghua Univ, Dept Phys, State Key Lab Low Dimens Quantum Phys, Beijing 100084, Peoples R China
[4] City Univ Hong Kong, Dept Phys, Hong Kong, Hong Kong, Peoples R China
[5] City Univ Hong Kong, Shenzhen Res Inst, Shenzhen 518057, Peoples R China
来源
SCIENTIFIC REPORTS | 2017年 / 7卷
关键词
SURFACE-ENERGY; DIRECTION; ORIENTATION; GERMANIUM;
D O I
10.1038/s41598-017-15077-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Creating and manipulating nanowires (NWs) with controllable growth direction and crystal orientation is important to meeting the urgent demands of emerging applications with designed properties. Revealing the underlying mechanisms of the experimentally demonstrated effects of NW diameter and growth temperature on growth direction is crucial for applications. Here, we establish a thermodynamic model to clarify the dependence of NW growth direction on diameter and temperature via the vapor-liquid-solid growth mechanism, enabling analysis of NW critical length between unstable and stable states. At a small critical length, NWs with a large diameter or grown at low temperature tend to grow along the <111> direction, while at a large critical length, NWs with a small diameter or grown at high temperature favor the <110> direction. Specific growth parameters of ZnSe NW have been obtained which can guide the design of functional NWs for applications.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] A Thermodynamic Model of Diameter- and Temperature-dependent Semiconductor Nanowire Growth
    Xinlei Li
    Jun Ni
    Ruiqin Zhang
    Scientific Reports, 7
  • [2] Diameter- and current-density-dependent growth orientation of hexagonal CdSe nanowire arrays via electrodeposition
    Sun, Hongyu
    Li, Xiaohong
    Chen, Yan
    Guo, Defeng
    Xie, Yanwu
    Li, Wei
    Liu, Baoting
    Zhang, Xiangyi
    NANOTECHNOLOGY, 2009, 20 (42)
  • [3] Temperature-dependent grain growth model for AMTEC electrodes
    Lodhi, MAK
    Soon, SC
    Mohibullah, M
    JOURNAL OF POWER SOURCES, 2004, 135 (1-2) : 304 - 310
  • [4] REMARKS ON THERMODYNAMIC BEHAVIOUR OF TEMPERATURE-DEPENDENT PARAMETERS
    HALPERN, O
    ACTA PHYSICA AUSTRIACA, 1966, 24 (03): : 271 - &
  • [5] THERMODYNAMIC PROPERTIES OF A HARD-SPHERE FLUID WITH TEMPERATURE-DEPENDENT EFFECTIVE HARD-SPHERE DIAMETER
    WILHELM, E
    JOURNAL OF CHEMICAL PHYSICS, 1974, 60 (10): : 3896 - 3900
  • [6] Temperature and copepod growth in the sea: A comment on the temperature-dependent model of Huntley and Lopez
    Kleppel, GS
    Davis, CS
    Carter, K
    AMERICAN NATURALIST, 1996, 148 (02): : 397 - 406
  • [7] Levy-type complex diameter modulation in semiconductor nanowire growth
    Kohno, H
    Yoshida, H
    SOLID STATE COMMUNICATIONS, 2004, 132 (01) : 59 - 62
  • [8] Mass transport model for semiconductor nanowire growth
    Johansson, J
    Svensson, CPT
    Mårtensson, T
    Samuelson, L
    Seifert, W
    JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (28): : 13567 - 13571
  • [9] Temperature-dependent terahertz conductivity of tin oxide nanowire films
    Zou, Xingquan
    Luo, Jingshan
    Lee, Dongwook
    Cheng, Chuanwei
    Springer, Daniel
    Nair, Saritha K.
    Cheong, Siew Ann
    Fan, Hong Jin
    Chia, Elbert E. M.
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2012, 45 (46)
  • [10] Temperature-dependent photoluminescence properties of porous silicon nanowire arrays
    He, Haiping
    Liu, Chao
    Sun, Luwei
    Ye, Zhizhen
    APPLIED PHYSICS LETTERS, 2011, 99 (12)