Radionuclides which emit Auger electrons are widely used in diagnostic nuclear medicine. Studies have shown possible uptake of these in developing germ cells within the testes. In addition, mature sperm within the reproductive tract may be subject to uptake of radionuclides from the circulating blood pool. Though much work has been carried out concerning cellular dosimetry applied to spherical sources, such an approach may lead to significant errors when considering spermatids and spermatozoa, which are almost ellipsoidal in shape (with the long axis twice the short). A numerical method for determining geometrical reduction factors has been developed and used in conjunction with experimentally determined range-energy relationships for electrons, to determine dose gradients and S factors for homogeneous distributions of four commonly used diagnostic radionuclides (Tc-99m, In-111, I-123 and (TI)-T-201) throughout source regions of both spherical and ellipsoidal geometry at typical cellular dimensions. The results indicate that assumption of spherical geometry is acceptable when determining S factors for late-type germ cells, but introduces error into calculations of dose distribution towards the edge of the cell.