Biogenesis and functions of aminocarboxypropyluridine in tRNA

被引:42
|
作者
Takakura, Mayuko [1 ]
Ishiguro, Kensuke [1 ]
Akichika, Shinichiro [1 ]
Miyauchi, Kenjyo [1 ]
Suzuki, Tsutomu [1 ]
机构
[1] Univ Tokyo, Dept Chem & Biotechnol, Grad Sch Engn, Bunkyo Ku, 7-3-1 Hongo, Tokyo 1138656, Japan
关键词
PHENYLALANINE TRANSFER-RNA; RIBOSOMAL-RNA; MODIFIED NUCLEOSIDE; MUTATOR PHENOTYPE; RIBONUCLEIC-ACID; 18; S; 3-(3-AMINO-3-CARBOXYPROPYL)URIDINE; IDENTIFICATION; BIOSYNTHESIS; DATABASE;
D O I
10.1038/s41467-019-13525-3
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Transfer (t)RNAs contain a wide variety of post-transcriptional modifications, which play critical roles in tRNA stability and functions. 3-(3-amino-3-carboxypropyl)uridine (acp(3)U) is a highly conserved modification found in variable- and D-loops of tRNAs. Biogenesis and functions of acp(3)U have not been extensively investigated. Using a reverse-genetic approach supported by comparative genomics, we find here that the Escherichia coli yfiP gene, which we rename tapT (tRNA aminocarboxypropyltransferase), is responsible for acp(3)U formation in tRNA. Recombinant TapT synthesizes acp(3)U at position 47 of tRNAs in the presence of S-adenosylmethionine. Biochemical experiments reveal that acp 3 U47 confers thermal stability on tRNA. Curiously, the Delta tapT strain exhibits genome instability under continuous heat stress. We also find that the human homologs of tapT, DTWD1 and DTWD2, are responsible for acp(3)U formation at positions 20 and 20a of tRNAs, respectively. Double knockout cells of DTWD1 and DTWD2 exhibit growth retardation, indicating that acp(3)U is physiologically important in mammals.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] tRNA-like structures and their functions
    Wu, Sipeng
    Li, Xiang
    Wang, Geng
    FEBS JOURNAL, 2022, 289 (17) : 5089 - 5099
  • [32] Coordinate Regulation of Ribosome and tRNA Biogenesis Controls Hypoxic Injury and Translation
    Itani, Omar A.
    Zhong, Xuefei
    Tang, Xiaoting
    Scott, Barbara A.
    Yan, Jun Yi
    Flibotte, Stephane
    Lim, Yiting
    Hsieh, Andrew C.
    Bruce, James E.
    Van Gilst, Marc
    Crowder, C. Michael
    CURRENT BIOLOGY, 2021, 31 (01) : 128 - +
  • [33] The biogenesis pathway of tRNA-derived piRNAs in Bombyx germ cells
    Honda, Shozo
    Kawamura, Takuya
    Loher, Phillipe
    Morichika, Keisuke
    Rigoutsos, Isidore
    Kirino, Yohei
    NUCLEIC ACIDS RESEARCH, 2017, 45 (15) : 9108 - 9120
  • [34] Biosynthesis and functions of sulfur modifications in tRNA
    Shigi, Naoki
    FRONTIERS IN GENETICS, 2014, 5
  • [35] Extracurricular Functions of tRNA Modifications in Microorganisms
    Edwards, Ashley M.
    Addo, Maame A.
    Dos Santos, Patricia C.
    GENES, 2020, 11 (08) : 1 - 19
  • [36] Essential nontranslational functions of tRNA synthetases
    Guo, Min
    Schimmel, Paul
    NATURE CHEMICAL BIOLOGY, 2013, 9 (03) : 145 - 153
  • [37] The Biogenesis, Functions, and Challenges of Circular RNAs
    Li, Xiang
    Yang, Li
    Chen, Ling-Ling
    MOLECULAR CELL, 2018, 71 (03) : 428 - 442
  • [38] Biogenesis, evolution, and functions of plant microRNAs
    Pashkovskiy, P. P.
    Ryazansky, S. S.
    BIOCHEMISTRY-MOSCOW, 2013, 78 (06) : 627 - 637
  • [39] The Biogenesis and Functions of piRNAs in Human Diseases
    Wu, Xi
    Pan, Yutian
    Fang, Yuan
    Zhang, Jingxin
    Xie, Mengyan
    Yang, Fengming
    Yu, Tao
    Ma, Pei
    Li, Wei
    Shu, Yongqian
    MOLECULAR THERAPY NUCLEIC ACIDS, 2020, 21 : 108 - 120
  • [40] Biogenesis, functions and fate of plant microRNAs
    Naqvi, Afsar Raza
    Sarwat, Maryam
    Hasan, Shirin
    Roychodhury, Nirupam
    JOURNAL OF CELLULAR PHYSIOLOGY, 2012, 227 (09) : 3163 - 3168