Algebraic varieties are homeomorphic to varieties defined over number fields

被引:1
|
作者
Parusinski, Adam [1 ]
Rond, Guillaume [2 ]
机构
[1] Univ Cote Azur, CNRS, LJAD, UMR 7351, F-06108 Nice, France
[2] Univ Publ, CNRS, Cent Marseille, I2M, F-13453 Marseille, France
关键词
Deformation of singularities; Zariski equisingularity; semialgebraic map; algorithmic in algebraic geometry; SETS;
D O I
10.4171/CMH/490
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that every affine or projective algebraic variety defined over the field of real or complex numbers is homeomorphic to a variety defined over the field of algebraic numbers. We construct such a homeomorphism by carefully choosing a small deformation of the coefficients of the original equations. This deformation preserves all polynomial relations over Q satisfied by these coefficients and is equisingular in the sense of Zariski. Moreover we construct an algorithm, that, given a system of equations defining a variety V, produces a system of equations with coefficients in (Q) over bar of a variety homeomorphic to V.
引用
收藏
页码:339 / 359
页数:21
相关论文
共 50 条
  • [31] Galois sections for abelian varieties over number fields
    Ciperiani, Mirela
    Stix, Jakob
    [J]. JOURNAL DE THEORIE DES NOMBRES DE BORDEAUX, 2015, 27 (01): : 47 - 52
  • [32] On the number of points of some varieties over finite fields
    Perret, M
    [J]. BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2003, 35 : 309 - 320
  • [33] The inverse sieve problem for algebraic varieties over global fields
    Manuel Menconi, Juan
    Paredes, Marcelo
    Sasyk, Roman
    [J]. REVISTA MATEMATICA IBEROAMERICANA, 2021, 37 (06) : 2245 - 2284
  • [34] DEFINITE FUNCTIONS ON ALGEBRAIC-VARIETIES OVER ORDERED FIELDS
    BASARAB, SA
    [J]. REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, 1984, 29 (07): : 527 - 535
  • [35] ABELIAN VARIETIES OVER LARGE ALGEBRAIC FIELDS WITH INFINITE TORSION
    Zywina, David
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 2016, 211 (01) : 493 - 508
  • [36] THE KAKEYA SET AND MAXIMAL CONJECTURES FOR ALGEBRAIC VARIETIES OVER FINITE FIELDS
    Ellenberg, Jordan S.
    Oberlin, Richard
    Tao, Terence
    [J]. MATHEMATIKA, 2010, 56 (01) : 1 - 25
  • [37] Finiteness theorems for torsion of abelian varieties over large algebraic fields
    Jacobson, M
    Jarden, M
    [J]. ACTA ARITHMETICA, 2001, 98 (01) : 15 - 31
  • [38] APPROXIMATION THEORY AND RANK OF ABELIAN VARIETIES OVER LARGE ALGEBRAIC FIELDS
    FREY, G
    JARDEN, M
    [J]. PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1974, 28 (JAN) : 112 - 128
  • [39] On the number of points on abelian and Jacobian varieties over finite fields
    Aubry, Yves
    Haloui, Safia
    Lachaud, Gilles
    [J]. COMPTES RENDUS MATHEMATIQUE, 2012, 350 (19-20) : 907 - 910
  • [40] On the number of points on abelian and Jacobian varieties over finite fields
    Aubry, Yves
    Haloui, Safia
    Lachaud, Gilles
    [J]. ACTA ARITHMETICA, 2013, 160 (03) : 201 - 241