Algebraic varieties are homeomorphic to varieties defined over number fields

被引:1
|
作者
Parusinski, Adam [1 ]
Rond, Guillaume [2 ]
机构
[1] Univ Cote Azur, CNRS, LJAD, UMR 7351, F-06108 Nice, France
[2] Univ Publ, CNRS, Cent Marseille, I2M, F-13453 Marseille, France
关键词
Deformation of singularities; Zariski equisingularity; semialgebraic map; algorithmic in algebraic geometry; SETS;
D O I
10.4171/CMH/490
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that every affine or projective algebraic variety defined over the field of real or complex numbers is homeomorphic to a variety defined over the field of algebraic numbers. We construct such a homeomorphism by carefully choosing a small deformation of the coefficients of the original equations. This deformation preserves all polynomial relations over Q satisfied by these coefficients and is equisingular in the sense of Zariski. Moreover we construct an algorithm, that, given a system of equations defining a variety V, produces a system of equations with coefficients in (Q) over bar of a variety homeomorphic to V.
引用
收藏
页码:339 / 359
页数:21
相关论文
共 50 条
  • [1] DESCENT FOR RATIONAL VARIETIES DEFINED OVER NUMBER FIELDS
    COLLIOTTHELENE, JL
    SANSUC, JJ
    [J]. COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1977, 284 (19): : 1215 - 1218
  • [2] RATIONAL POINTS ON ALGEBRAIC VARIETIES OVER LARGE NUMBER FIELDS
    JARDEN, M
    [J]. BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 75 (03): : 603 - &
  • [3] Algebraic varieties over PAC fields
    János Kollár
    [J]. Israel Journal of Mathematics, 2007, 161 : 89 - 101
  • [4] Algebraic varieties over small fields
    Bogomolov, Fedor
    Tschinkel, Yuri
    [J]. DIOPHANTINE GEOMETRY, PROCEEDINGS, 2007, 4 : 73 - +
  • [5] Algebraic varieties over PAC fields
    Kollar, Janos
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 2007, 161 (01) : 89 - 101
  • [6] The Number of Rational Points of a Family of Algebraic Varieties over Finite Fields
    Hu, Shuangnian
    Zhao, Junyong
    [J]. ALGEBRA COLLOQUIUM, 2017, 24 (04) : 705 - 720
  • [7] On the number of rational points of certain algebraic varieties over finite fields
    Zhu, Guangyan
    Hong, Siao
    [J]. FORUM MATHEMATICUM, 2023, 35 (06) : 1511 - 1532
  • [8] ARITHMETIC OF 0-CYCLES ON VARIETIES DEFINED OVER NUMBER FIELDS
    Liang, Yongqi
    [J]. ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2013, 46 (01): : 35 - 56
  • [9] ALGEBRAIC VARIETIES OVER REAL CLOSED FIELDS
    GEYER, WD
    [J]. NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 16 (01): : 280 - &
  • [10] INVARIANTS OF ALGEBRAIC VARIETIES OVER IMPERFECT FIELDS
    Tanaka, Hiromu
    [J]. TOHOKU MATHEMATICAL JOURNAL, 2021, 73 (04) : 471 - 538