A multi-model approach for long-term runoff modeling using rainfall forecasts

被引:15
|
作者
Evsukoff, Alexandre G. [1 ]
Cataldi, Marcio [2 ,3 ]
de Lima, Beatriz S. L. P. [1 ]
机构
[1] Univ Fed Rio de Janeiro, COPPE, BR-21941972 Rio De Janeiro, RJ, Brazil
[2] Univ Fed Fluminense, Dept Engn Agr & Meio Ambiente, Niteroi, RJ, Brazil
[3] ONS, Rio De Janeiro, RJ, Brazil
关键词
Rainfall-runoff model; Catchments; Runoff; Recurrent fuzzy system; Data mining; NEURAL-NETWORKS; GENETIC ALGORITHM; FUZZY; PREDICTION; SCHEME; RIVER; FEEDFORWARD; SYSTEM;
D O I
10.1016/j.eswa.2011.10.023
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This work presents the development of a rainfall-runoff model for the lguacu River basin in the south of Brazil. The model was developed to support the operational planning of hydroelectric power plants and is intended to compute natural flow predictions based on meteorological rain forecasts. A recurrent fuzzy system model was employed, with parameters estimated by a genetic algorithm using observed rainfall as input. This work presents the recurrent fuzzy model within a multi-model approach, where the input data are furnished as an envelope, resulting in a prediction envelope that has demonstrated the ability to produce robust results. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:4938 / 4946
页数:9
相关论文
共 50 条
  • [31] Regional scale rainfall–runoff modeling using VARX–MGARCH approach
    Farshad Fathian
    Ahmad Fakheri-Fard
    Reza Modarres
    P. H. A. J. M. van Gelder
    [J]. Stochastic Environmental Research and Risk Assessment, 2018, 32 : 999 - 1016
  • [32] Runoff responses to long-term rainfall variability in a shrub-dominated catchment
    Turnbull, L.
    Parsons, A. J.
    Wainwright, J.
    Anderson, J. P.
    [J]. JOURNAL OF ARID ENVIRONMENTS, 2013, 91 : 88 - 94
  • [33] UK Rainfall Data: A Long-Term Persistence Approach
    Gil-Alana, Luis A.
    [J]. JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY, 2012, 51 (10) : 1904 - 1913
  • [34] High temporal resolution rainfall–runoff modeling using long-short-term-memory (LSTM) networks
    Wei Li
    Amin Kiaghadi
    Clint Dawson
    [J]. Neural Computing and Applications, 2021, 33 : 1261 - 1278
  • [35] Japan's long-term climate mitigation policy: Multi-model assessment and sectoral challenges
    Sugiyama, Masahiro
    Fujimori, Shinichiro
    Wada, Kenichi
    Endo, Seiya
    Fujii, Yasumasa
    Komiyama, Ryoichi
    Kato, Etsushi
    Kurosawa, Atsushi
    Matsuo, Yuhji
    Oshiro, Ken
    Sano, Fuminori
    Shiraki, Hiroto
    [J]. ENERGY, 2019, 167 : 1120 - 1131
  • [36] A multi-model superensemble algorithm for seasonal climate prediction using DEMETER forecasts
    Yun, WT
    Stefanova, L
    Mitra, AK
    Kumar, TSVV
    Dewar, W
    Krishnamurti, TN
    [J]. TELLUS SERIES A-DYNAMIC METEOROLOGY AND OCEANOGRAPHY, 2005, 57 (03) : 280 - 289
  • [37] Spatial succession modeling of biological communities: a multi-model approach
    WenJun Zhang
    Wu Wei
    [J]. Environmental Monitoring and Assessment, 2009, 158 : 213 - 230
  • [38] How to create an operational multi-model of seasonal forecasts?
    Hemri, Stephan
    Bhend, Jonas
    Liniger, Mark A.
    Manzanas, Rodrigo
    Siegert, Stefan
    Stephenson, David B.
    Gutierrez, Jose M.
    Brookshaw, Anca
    Doblas-Reyes, Francisco J.
    [J]. CLIMATE DYNAMICS, 2020, 55 (5-6) : 1141 - 1157
  • [39] Multi-model seasonal forecasts for the wind energy sector
    Lee, Doo Young
    Doblas-Reyes, Francisco J.
    Torralba, Veronica
    Gonzalez-Reviriego, Nube
    [J]. CLIMATE DYNAMICS, 2019, 53 (5-6) : 2715 - 2729
  • [40] Spatial succession modeling of biological communities: a multi-model approach
    Zhang, WenJun
    Wei, Wu
    [J]. ENVIRONMENTAL MONITORING AND ASSESSMENT, 2009, 158 (1-4) : 213 - 230