Efficient Semantic Enrichment Process for Spatiotemporal Trajectories

被引:1
|
作者
Zhao, Bin [1 ]
Liu, Mingyu [1 ]
Han, Jingjing [2 ]
Ji, Genlin [1 ]
Liu, Xintao [3 ]
机构
[1] Nanjing Normal Univ, Sch Comp & Elect Informat, Sch Artificial Intelligence, Nanjing, Peoples R China
[2] Jiangsu Open Univ, Qual Assurance Off, Nanjing, Peoples R China
[3] Hong Kong Polytech Univ, Dept Land Surveying & Geoinformat, Hong Kong, Peoples R China
关键词
MOVEMENT;
D O I
10.1155/2021/4488781
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The increasing availability of location-acquisition technologies has enabled collecting large-scale spatiotemporal trajectories, from which we can derive semantic information in urban environments, including location, time, direction, speed, and point of interest. Such semantic information can give us a semantic interpretation of movement behaviors of moving objects. However, existing semantic enrichment process approaches, which can produce semantic trajectories, are generally time-consuming. In this paper, we propose an efficient semantic enrichment process framework to annotate spatiotemporal trajectories by using geographic and application domain knowledge. The framework mainly includes preannotated semantic trajectory storage phase, spatiotemporal similarity measurement phase, and semantic information matching phase. Having observed the common trajectories in the same geospatial object scenes, we propose a semantic information matching algorithm to match semantic information in preannotated semantic trajectories to new spatiotemporal trajectories. In order to improve the efficiency of this approach, we build a spatial index to enhance the preannotated semantic trajectories. Finally, the experimental results based on a real dataset demonstrate the effectiveness and efficiency of our proposed approaches.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Semantic enrichment in ontologies for matching
    Tun, Nwe Ni
    Tojo, Satoshi
    INTERNATIONAL JOURNAL ON SEMANTIC WEB AND INFORMATION SYSTEMS, 2006, 2 (04) : 33 - 67
  • [32] Semantic Enrichment of Folksonomy Tagspaces
    Angeletou, Sofia
    SEMANTIC WEB - ISWC 2008, 2008, 5318 : 889 - 894
  • [33] Semantic enrichment for ontology mapping
    Su, XM
    Gulla, JA
    NATURAL LANGUAGE PROCESSING AND INFORMATION SYSTEMS, 2004, 3136 : 217 - 228
  • [34] The datAcron Ontology for Semantic Trajectories
    Santipantakis, Georgios M.
    Vouros, George A.
    Glenis, Apostolos
    Doulkeridis, Christos
    Vlachou, Akrivi
    SEMANTIC WEB: ESWC 2017 SATELLITE EVENTS, 2017, 10577 : 26 - 30
  • [35] Semantic enrichment for medical ontologies
    Lee, Y
    Geller, J
    JOURNAL OF BIOMEDICAL INFORMATICS, 2006, 39 (02) : 209 - 226
  • [36] Semantic Enrichment of Relational Databases
    Kamal, Hamaz
    Fouzia, Benchikha
    PROCEEDINGS OF THE 2012 IEEE SECOND INTERNATIONAL WORKSHOP ON ADVANCED INFORMATION SYSTEMS FOR ENTERPRISES (IWAISE 2012), 2012, : 15 - 19
  • [37] Towards efficient verification for process composition of semantic web services
    Luo, Nan
    Yan, Junwei
    Liu, Min
    2007 IEEE INTERNATIONAL CONFERENCE ON SERVICES COMPUTING, PROCEEDINGS, 2007, : 220 - +
  • [38] SPATIOTEMPORAL RESPONSES OF A GLASSHOUSE TO GASEOUS ENRICHMENT
    CHALABI, Z
    FERNANDEZ, JE
    JOURNAL OF AGRICULTURAL ENGINEERING RESEARCH, 1992, 51 (02): : 139 - 151
  • [39] Thwarting Uniqueness in Datasets of Spatiotemporal Trajectories
    Gramaglia, Marco
    Fiore, Marco
    ERCIM NEWS, 2016, (106): : 21 - +
  • [40] The datAcron Ontology for the Specification of Semantic Trajectories: Specification of Semantic Trajectories for Data Transformations Supporting Visual Analytics
    Vouros, George A.
    Santipantakis, Georgios M.
    Doulkeridis, Christos
    Vlachou, Akrivi
    Andrienko, Gennady
    Andrienko, Natalia
    Fuchs, Georg
    Cordero Garcia, Jose Manuel
    Garcia Martinez, Miguel
    JOURNAL ON DATA SEMANTICS, 2019, 8 (04) : 235 - 262