HOW THE PARAMETER ε INFLUENCE THE GROWTH RATES OF THE PARTIAL QUOTIENTS IN GCFε EXPANSIONS

被引:3
|
作者
Zhong, Ting [1 ]
Shen, Luming [2 ]
机构
[1] Jishou Univ, Dept Math, Zhangjiajie 427000, Peoples R China
[2] Hunan Agr Univ, Coll Sci, Changsha 410128, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
GCF(epsilon) expansion; Engel series expansion; parameter function; growth rates; Hausdorff dimension; CONTINUED FRACTIONS;
D O I
10.4134/JKMS.2015.52.3.637
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For generalized continued fraction (GCF) with parameter epsilon(k), we consider the size of the set whose partial quotients increase rapidly, namely the set E-epsilon(alpha) := {x is an element of (0,1] : k(n+1)(x) >= k(n)(x)(alpha) for all n >= 1}, where alpha > 1. We in [6] have obtained the Hausdorff dimension of E-epsilon(alpha) when epsilon(k) is constant or epsilon(k) similar to k(beta) for any beta >= 1. As its supplement, now we show that: dim(H) E-epsilon(alpha) = {1/alpha, when -k(delta) <= epsilon(k) <= k with 0 <= delta < 1; 1/alpha+1, when -k - rho < epsilon(k) <= -k with 0 < rho < 1; 1/alpha+2, when epsilon(k) = -k - 1 + 1/k. So the bigger the parameter function epsilon(k(n)) is, the larger the size of E-epsilon(alpha) becomes.
引用
收藏
页码:637 / 647
页数:11
相关论文
共 50 条
  • [21] Some asymptotic results for the continued fraction expansions with odd partial quotients
    Sebe, Gabriela Ileana
    Lascu, Dan
    TURKISH JOURNAL OF MATHEMATICS, 2022, 46 (07) : 3011 - 3024
  • [22] A GROWTH BOUND ON THE PARTIAL QUOTIENTS OF CUBIC NUMBERS
    WOLFSKILL, J
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1984, 346 : 129 - 140
  • [23] On the growth behavior of partial quotients in continued fractions
    Shang, Lei
    Wu, Min
    ARCHIV DER MATHEMATIK, 2023, 120 (03) : 297 - 305
  • [24] On the growth behavior of partial quotients in continued fractions
    Lei Shang
    Min Wu
    Archiv der Mathematik, 2023, 120 : 297 - 305
  • [25] On the growth rate of partial quotients in Engel continued fractions
    Song, Kunkun
    Li, Zhihui
    Shang, Lei
    PUBLICATIONES MATHEMATICAE DEBRECEN, 2025, 106 (1-2): : 103 - 123
  • [26] The relative growth rate for partial quotients in continued fractions
    Tan, Bo
    Zhou, Qinglong
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 478 (01) : 229 - 235
  • [27] How the dimension of some GCFε, sets change with proper choice of the parameter function ε(k)
    Wu, Xi
    Yan, Li
    Zhong, Ting
    JOURNAL OF NUMBER THEORY, 2017, 174 : 1 - 13
  • [28] Characterization of Nonuniform Contractions and Expansions with Growth Rates
    Luis Barreira
    Davor Dragičević
    Claudia Valls
    Mediterranean Journal of Mathematics, 2016, 13 : 4265 - 4279
  • [29] The growth rates of digits in the Oppenheim series expansions
    Wang, BW
    Wu, J
    ACTA ARITHMETICA, 2006, 121 (02) : 175 - 192
  • [30] Characterization of Nonuniform Contractions and Expansions with Growth Rates
    Barreira, Luis
    Dragicevic, Davor
    Valls, Claudia
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2016, 13 (06) : 4265 - 4279