共 50 条
HOW THE PARAMETER ε INFLUENCE THE GROWTH RATES OF THE PARTIAL QUOTIENTS IN GCFε EXPANSIONS
被引:3
|作者:
Zhong, Ting
[1
]
Shen, Luming
[2
]
机构:
[1] Jishou Univ, Dept Math, Zhangjiajie 427000, Peoples R China
[2] Hunan Agr Univ, Coll Sci, Changsha 410128, Hunan, Peoples R China
基金:
中国国家自然科学基金;
关键词:
GCF(epsilon) expansion;
Engel series expansion;
parameter function;
growth rates;
Hausdorff dimension;
CONTINUED FRACTIONS;
D O I:
10.4134/JKMS.2015.52.3.637
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
For generalized continued fraction (GCF) with parameter epsilon(k), we consider the size of the set whose partial quotients increase rapidly, namely the set E-epsilon(alpha) := {x is an element of (0,1] : k(n+1)(x) >= k(n)(x)(alpha) for all n >= 1}, where alpha > 1. We in [6] have obtained the Hausdorff dimension of E-epsilon(alpha) when epsilon(k) is constant or epsilon(k) similar to k(beta) for any beta >= 1. As its supplement, now we show that: dim(H) E-epsilon(alpha) = {1/alpha, when -k(delta) <= epsilon(k) <= k with 0 <= delta < 1; 1/alpha+1, when -k - rho < epsilon(k) <= -k with 0 < rho < 1; 1/alpha+2, when epsilon(k) = -k - 1 + 1/k. So the bigger the parameter function epsilon(k(n)) is, the larger the size of E-epsilon(alpha) becomes.
引用
收藏
页码:637 / 647
页数:11
相关论文