Geometric invariant theory and Einstein-Weyl geometry

被引:3
|
作者
Kalafat, Mustafa [1 ,2 ]
机构
[1] Univ Wisconsin, Dept Math, Madison, WI 53706 USA
[2] Middle E Tech Univ, Dept Math, TR-06531 Ankara, Turkey
关键词
Toric varieties; Geometric invariant theory; Einstein-Weyl geometry; Minitwistor space; SELF-DUAL METRICS;
D O I
10.1016/j.exmath.2011.01.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we give a survey of geometric invariant theory for Toric Varieties, and present an application to the Einstein-Weyl geometry. We compute the image of the Minitwistor space of the Honda metrics as a categorical quotient according to the most efficient linearization. The result is the complex weighted projective space CP(1,1,2). We also find and classify all possible quotients. (C) 2011 Published by Elsevier GmbH.
引用
收藏
页码:220 / 230
页数:11
相关论文
共 50 条
  • [21] Local heterotic geometry and self-dual Einstein-Weyl spaces
    Tod, KP
    [J]. CLASSICAL AND QUANTUM GRAVITY, 1996, 13 (10) : 2609 - 2616
  • [22] Einstein-Weyl structures and Bianchi metrics
    Bonneau, G
    [J]. CLASSICAL AND QUANTUM GRAVITY, 1998, 15 (08) : 2415 - 2425
  • [23] Phase diagram of Einstein-Weyl gravity
    Silveravalle, S.
    Zuccotti, A.
    [J]. PHYSICAL REVIEW D, 2023, 107 (06)
  • [24] Local constraints on Einstein-Weyl geometries
    Eastwood, MG
    Tod, KP
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1997, 491 : 183 - 198
  • [25] Two dimensional Einstein-Weyl structures
    Calderbank, DMJ
    [J]. GLASGOW MATHEMATICAL JOURNAL, 2001, 43 : 419 - 424
  • [26] An action principle for the Einstein-Weyl equations
    Klemm, Silke
    Ravera, Lucrezia
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2020, 158
  • [27] On supersymmetric Lorentzian Einstein-Weyl spaces
    Meessen, Patrick
    Ortin, Tomas
    Palomo-Lozano, Alberto
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2012, 62 (02) : 301 - 311
  • [28] TWISTOR TRANSFORM OF EINSTEIN-WEYL SUPERSPACES
    MERKULOV, SA
    [J]. CLASSICAL AND QUANTUM GRAVITY, 1991, 8 (12) : 2149 - 2162
  • [29] S(1)XS(2) AS A BAG MEMBRANE AND ITS EINSTEIN-WEYL GEOMETRY
    ROSU, H
    [J]. NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA A-NUCLEI PARTICLES AND FIELDS, 1994, 107 (09): : 1543 - 1547
  • [30] COsmological solution of the einstein-weyl equation
    Makarenko A.N.
    Obukhov V.V.
    [J]. Russian Physics Journal, 1998, 41 (11) : 1124 - 1133