A SIMPLE PROOF FOR THE BOUNDARY SCHWARZ LEMMA FOR PLURIHARMONIC MAPPINGS

被引:6
|
作者
Hamada, Hidetaka [1 ]
机构
[1] Kyushu Sangyo Univ, Fac Engn, Higashi Ku, 3-1 Matsukadai,2 Chome, Fukuoka 8138503, Japan
关键词
Boundary Schwarz lemma; pluriharmonic mapping; UNIT BALL; C-N;
D O I
10.5186/aasfm.2017.4245
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we give a simple proof for the boundary Schwarz lemma for pluriharmonic mappings between Euclidean unit balls. We also give some generalization to C-1-mappings between domains with smooth boundaries.
引用
收藏
页码:799 / 802
页数:4
相关论文
共 50 条
  • [21] SCHWARZ LEMMA AT THE BOUNDARY AND RIGIDITY PROPERTY FOR HOLOMORPHIC MAPPINGS ON THE UNIT BALL OF Cn
    Tang, Xiaomin
    Liu, Taishun
    Zhang, Wenjun
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 145 (04) : 1709 - 1716
  • [22] Boundary Schwarz Lemma and Rigidity Property for Holomorphic Mappings of the Unit Polydisc in Cn
    Huang, Ziyan
    Zhao, Di
    Li, Hongyi
    FILOMAT, 2020, 34 (09) : 2813 - 2818
  • [23] Boundary Schwarz Lemma for Holomorphic Self-mappings of Strongly Pseudoconvex Domains
    Wang, Xieping
    Ren, Guangbin
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2017, 11 (02) : 345 - 358
  • [24] Schwarz lemma and rigidity theorem at the boundary for holomorphic mappings on the unit polydisk in Cn
    Liu, Taishun
    Tang, Xiaomin
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 489 (02)
  • [25] Boundary Schwarz Lemma for Holomorphic Self-mappings of Strongly Pseudoconvex Domains
    Xieping Wang
    Guangbin Ren
    Complex Analysis and Operator Theory, 2017, 11 : 345 - 358
  • [26] Some generalizations for the Schwarz-Pick lemma and boundary Schwarz lemma
    Cai, Fangming
    Rui, Jie
    Zhong, Deguang
    AIMS MATHEMATICS, 2023, 8 (12): : 30992 - 31007
  • [27] A SHARP SCHWARZ LEMMA AT THE BOUNDARY
    Akyel, Tugba
    Ornek, Bulent Nafi
    JOURNAL OF THE KOREAN SOCIETY OF MATHEMATICAL EDUCATION SERIES B-PURE AND APPLIED MATHEMATICS, 2015, 22 (03): : 263 - 273
  • [28] A generalized Schwarz lemma at the boundary
    Chelst, D
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 129 (11) : 3275 - 3278
  • [29] An improved Schwarz Lemma at the boundary
    Mercer, Peter R.
    OPEN MATHEMATICS, 2018, 16 : 1140 - 1144
  • [30] SCHWARZ LEMMA FOR HOLOMORPHIC MAPPINGS IN THE UNIT BALL
    Kalaj, David
    GLASGOW MATHEMATICAL JOURNAL, 2018, 60 (01) : 219 - 224